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Abstract

The effect of an imperfect interface on the dispersive behavior of in-plane time-harmonic symmetric waves in a pre-
stressed incompressible symmetric layered composite, was analyzed recently by Leungvichcharoen and Wijeyewickrema
(2003). In the present paper the corresponding case for time harmonic anti-symmetric waves is considered. The bi-
material composite consists of incompressible isotropic elastic materials. The imperfect interface is simulated by a
shear-spring type resistance model, which can also accommodate the extreme cases of perfectly bonded and fully
slipping interfaces. The dispersion relation is obtained by formulating the incremental boundary-value problem and
using the propagator matrix technique. The dispersion relations for anti-symmetric and symmetric waves differ from
each other only through the elements of the propagator matrix associated with the inner layer. The behavior of the
dispersion curves for anti-symmetric waves is for the most part similar to that of symmetric waves at the low and high
wavenumber limits. At the low wavenumber limit, depending on the pre-stress for perfectly bonded and imperfect
interface cases, a finite phase speed may exist only for the fundamental mode while other higher modes have an infinite
phase speed. However, for a fully slipping interface in the low wavenumber region it may be possible for both the
fundamental mode and the next lowest mode to have finite phase speeds. For the higher modes which have infinite
phase speeds in the low wavenumber region an expression to determine the cut-off frequencies is obtained. At the high
wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the phase speeds of the
surface wave or the interfacial wave or the limiting phase speed of the composite. The bifurcation equation obtained
from the dispersion relation yields neutral curves that separate the stable and unstable regions associated with the
fundamental mode or the next lowest mode. Numerical examples of dispersion curves are presented, where when the
material has to be prescribed either Mooney—Rivlin material or Varga material is assumed. The effect of imperfect
interfaces on anti-symmetric waves is clearly evident in the numerical results.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dispersive behavior of time harmonic in-plane symmetric waves in a pre-stressed incompressible
symmetric layered composite with imperfect interface conditions, has been studied recently by Leung-
vichcharoen and Wijeyewickrema (2003), henceforth referred to as LW (2003). At the interface, stress
increments and the displacement increment normal to the interface were assumed to be continuous, while
the shear stress increment was assumed to be proportional to the jump in tangential displacement incre-
ments. The linear shear spring type resistance model employed to simulate the imperfect interface in LW
(2003) can easily accommodate the extreme cases of perfectly bonded and fully slipping interfaces. In the
present paper the corresponding case for time harmonic anti-symmetric waves is considered.

Previous work in the area of wave propagation in pre-stressed incompressible layers (Ogden
and Roxburgh, 1993; Rogerson and Fu, 1995; Rogerson, 1997) and layered composites (Rogerson and
Sandiford, 1996, 1997, 1999, 2000) are discussed in LW (2003) and will not be further elaborated on in this
paper. Other recent related research is an extension of the work reported by Kaplunov et al. (1998) on
asymptotically consistent theory for linear elastic thin-walled structures, to pre-stressed elastic layer
problems, see for e.g. Kaplunov et al. (2000) for long-wave low-frequency motion, Pichugin and Rogerson
(2001), Kaplunov and Rogerson (2002) and Nolde and Rogerson (2002) for long-wave high-frequency
motion and Kaplunov et al. (2002) for short-wave high-frequency motion.

The basic equations of infinitesimal harmonic wave propagation in pre-stressed, incompressible, elastic
media are given in Section 2. Using the propagator matrix, the dispersion relation for anti-symmetric
motion is obtained in Section 3. It is shown that the dispersion relations for anti-symmetric and symmetric
waves, differ from each other only through the elements of the propagator matrix associated with the inner
layer. In Section 4 some interesting common features of these two kinds of waves viz. the asymptotic limits
at low and high wavenumber limits are discussed. For the higher modes which have infinite phase speeds in
the low wavenumber region, cut-off frequencies are investigated. Stability considerations not considered in
LW (2003) are explored in detail for both anti-symmetric and symmetric waves in Section 5. Numerical
examples using the same material parameters and pre-stressed conditions used in LW (2003), are presented
in Section 6, where dispersion curves and neutral curves are plotted. In the case of dispersion curves the
results for symmetric waves are only plotted for comparison as these curves were discussed in detail in LW
(2003).

2. Basic equations

The equations for infinitesimal time-harmonic wave propagation in pre-stressed incompressible elastic
media (see Dowaikh and Ogden, 1990; Rogerson and Sandiford, 1997; LW, 2003) are given in this section.
Consider a homogeneous, incompressible, isotropic elastic body with an initial unstressed state B,, which
after being subjected to pure homogeneous strains has the new configuration B,, the pre-stressed equi-
librium state. A Cartesian co-ordinate system Ox;x,x3, with axes coincident with the principal axes of strain
is chosen for configuration B,. Let u be a small, time dependent displacement superimposed on B,. For the
plane strain incremental problem considered here, the non-zero displacement components u;, (i = 1,2) are
independent of x;. The incremental equations of motion where the linearized incompressibility condition
u;; = 0 has been used is

Ao + (Lot + AL o2)ua + Ao — py = pily, 1)

(Lo + L on11)ur12 + Lozt + oot — pa = pily,
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in which .7y, are the components of the fourth-order tensor of first-order instantaneous moduli of
incompressible isotropic elastic material which relates the nominal stress increment tensor and the defor-
mation gradient increment tensor and can be given in terms of derivatives of the strain energy function
(Ogden, 1984, p. 344), p the incremental pressure, p the material density and superimposed dot and comma
indicate differentiation with respect to time ¢ and the spatial coordinate component in B,, respectively.
The relevant components of the nominal stress increment tensor in the configuration B, are expressed as,

So21(x1,X2,8) = Lo 2 + (Loo12 + P)ua,
022 (%1, %2, 1) = Ao + (A o222 + Pitay — p,

2)

where p = .y — o221 — 02 (Rogerson and Fu, 1995) is a quasi-static pressure in which o, is the
principal Cauchy stress in the x,-direction in B,.

The displacement and pressure increments for harmonic waves propagating in x;-direction, may be
expressed as

(ul7u27p) = (A17A27kP)equzeik(XIivl)a (3)

where & is the wavenumber, v the phase speed, 4, 4, and P are unknown coefficients and the parameter g is
to be determined. Substituting Eq. (3) into Eq. (1) and using the linearized incompressibility condition,
yields a system of homogeneous equations for which a non-trivial solution exists provided that

74t — (2B — pv*)q* + (. — pv*) = 0, (4)

where o = ¢52/()]2]2, 2ﬁ = 3{01111 + JZ/02222 — 2&/01122 — 2&{01221 and V= <SZ{()2121 and the four roots of q are
given by +¢g,, (m = 1,2). From the definition of instantaneous elastic moduli of incompressible isotropic
elastic material, the parameters o, § and y are expressed in terms of the strain energy function # and the
principal stretches 4; and 4, as (Dowaikh and Ogden, 1991),

wiy =y = (Wi — WR) 135/ (33 — 13),
2B+2y = ﬁWu + @Wn — 20 Wiy + 2.5,
where W, =0W/0k, W,;=0"W/dl,0%;, (i,j=1,2) and when 4, =24 =24, Eq. (5) reduces to

a=pFf=y= %/I(AWU — AW, + W). In addition, the strong ellipticity conditions (Dowaikh and Ogden,
1990)

x>0, y>0, B>—u. (6)

are necessary for stable in-plane harmonic wave propagation in the pre-stressed elastic material, and will be
considered in Section 5 when the stability criteria of wave propagation in layered composites are discussed.

In order to obtain the propagator matrix, the incremental displacements and stresses in Egs. (2) and (3)
are written in the form of a 4x 1 vector as

(5)

(ur, u2;30217S022)T = [Ui(x2), Uz(xz)a5021(xz)aSozz(xz)]Teik(xlfvt)‘ (7)
From Eq. (7) it can be shown after some manipulation that
y(x2) = HE(x2)a, (8)

where y(x,) is a displacement-stress increment vector and E(x,) is a diagonal matrix given by

V() = | — iU (), U (), Sozilgxz) ,Sozzk(xz) 7 o)

E(xz) — diag(eqlk"z, e“]]kx2, eqzk‘cz’ e—qzkxz)’

and a is a vector of arbitrary constants and H is a 4x4 matrix independent of position x, defined by
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q1 —4q1 q2 —q>

_ ) 4@ 4B3) 4@NT _ 1 1 1 1
a=(4,,4,",45",4,"), H= W) o) o (a2) S | (10)

101/ (q2)  —vaif(q2) vaf (@) —yqaf(qr)

where f(q.) =1+ ¢* —a,(m=1,2) and 0 = 6,/7.
The vector a is eliminated from Eq. (8) by introducing the vector y(x,) at some location x, = X, to obtain

y(x2) = HE(x; — fz)H71Y(fz) =P(x; — %)y(x2). (11)

The matrix P(x, — X,) is the propagator matrix (Gilbert and Backus, 1966; Rogerson and Sandiford, 1997),
cf. Appendix A.

3. Formulation of the problem

The pre-stressed symmetric layered composite shown in Fig. 1, consists of two isotropic incompressible
elastic materials, where the principal axes of strain in each layer are coincident. The Cartesian coordinate
system is chosen such that x;- and x,-axes are also coincident with the principal axes, the x,-direction is
normal to the free surface of the layered composite, wave propagation is in x;-direction and the origin O lies
at the mid plane of the composite. The thickness of the inner layer is 2d, and the thickness of the outer
layers is 4. The outer layers and inner layer are homogeneous with material parameters and mass density o,
B, v, p and o, §*, y*, p*, respectively. In the remainder of the paper, all quantities with an asterisk refer to
variables and parameters of the inner layer.

For anti-symmetric wave propagation in the pre-stressed symmetric layered composite it is sufficient to
consider only the upper half of the composite (0 <x, <d + &). For the outer layer, from Eq. (11) the
relation between displacement—stress increment vectors at the boundary of the layered composite and the
interface is written as

¥(d + h) = P(R)y(d). (12)

By considering the displacement and pressure increments for harmonic waves propagating in the x;-
direction in the inner layer and introducing the displacement-stress increment vector y*, the propagator
matrix for the inner layer P* may be determined. For the inner layer the relation between displacement—
stress increment vectors at the interface and mid-plane may be established as

y'(d) =P (d)y"(0). (13)

The anti-symmetric mid-plane conditions and the incremental traction free upper surface conditions can be
written as

U7 (0) = S5, (0) =0, So21(d + h) = Soa(d + 1) = 0. (14)

At the interface, stress increments and the displacement increment in the x,-direction are assumed to be
continuous, while the shear stress increment is assumed to be proportional to the displacement increment
jump in the x;-direction. These interfacial conditions yield

X,

h [a@prp |
2d % R 3 ]} X,
nl | |

Fig. 1. Pre-stressed equilibrium configuration of a symmetric layered composite.
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S (d) = Soa1(d),  Sgpa(d) = Som(d),

k

\ . key . (15)
UZ(d) =0, (d), SOZl(d) = T [Ul(d) -y (d)]7

where £, is the non-dimensional shear spring parameter. From Egs. (12), (13) and (15) the relation between
y(d + h) and y*(0) is expressed as

y(d +h) = P(h)P*(d)y*(0), (16)

where P;(d) = P;(d) + oakhPy;(d)/(k.y) and the elements of P(h) and P"(d) are given in Appendix A.
Substituting Eq. (14) into Eq. (16) yields a set of four homogeneous linear simultaneous equations for four
unknowns from which the dispersion relation for anti-symmetric waves in an imperfectly bonded composite
is obtained as

4 4 4
kh
D D PuPaPyFyy = PuPiPyPal + 1= > IPuPaPuPss + PufiPuPsy — PuPiPuPiy — PuPaPuPy) = 0,
xri=1

i=1 j=1

~.

(17)
for k. > 0, where P; and P;; are the elements of P(h) and P*(d) respectively. The above equation is similar in
form to the dispersion relation obtained for symmetric waves (Eq. (3.5), LW, 2003)

4 4 4
Z Z[P%PAPMPA P31PI4P4/P I+ Koy Z[P3iPi1P41P34 + PuPyPs Py — PP PPy — PPy Py Py = 0.
=1 j=1 =l

(18)

It is seen that the two dispersion relations differ from each other only through the elements P associated

with the inner layer due to the change in mid-plane conditions.

The elements of P(h) and P*(d) are substituted into Eq. (17) and the common factor

01923 — 2) (g2 — ¢3?) is removed from the denominator. The removal of this common factor leads to

spurious roots in the resulting relation

20142/ (90 (42) A1 + 1f (02)°[C1$:42 + CLCodls + 518244 + $1Cods] = gaf (1)’ [S1C24
+ 81845 + C1Cr 44 + C1S,45) + (@> {911 (92)°[C18:246 + 818247 + (C1Cy — 1) 4]
—qu(ql) [S1Cod6 + (C1Cy — 1) 47 + 815, 45]} =0, (19)
where

Ay = qilf"(q3) — rf (@)llnf (q) — f7(@3)]S1C5 + @311 (q7) — rf (q)llf " (q7) — rf (q1)]C} S5,

A = qiq5r(f(q1) — f(@)If"(q1) — /7 (43)]1S1S5,

A5 = 4iqalf*(g5) — rf (a)]*S;C5 — g5l (a7) — rf (1)) Ci s,

Ay = g5q1[f"(q}) = rf (@) CiS; — qianlf*(43) — v/ (92)°S; s, 20
As = qiqor(f(q1) — (@)l (q7) — /7 (43)]C1 C5,

As = [f(q1) — f(@)llgsf " (4])’CiS; — 41 f " (45)°S; C3,

47 = qurf (@)’ (@3) = 1 (@})]CI G,

As = qurf (91)’1f*(q}) — /" (¢3)C{ G,
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and f(gn), Cy, Sw, (m = 1,2) are defined in Eq. (A.2) and f*(q},), C;, S&, (m = 1,2), r are defined in Eq.
(A.3). Eq. (19) is identical to the dispersion relation for symmetric Waves (Eq. (3.6), LW, 2003) but 4;,
(i=1,2,...,8) for the present case (Eq. (20)) is obtained by replacing C;, by S’ and S by C:, (m = 1,2) in
Eq. (3.7) of LW (2003). Rogerson and Sandiford (1997) obtained the dlspers1on relatlon in a similar form
for the perfectly bonded case.

Eq. (19) can be written in a more compact form as

GG (@) A9 + f7(g5) Ao + Au] — CSi1f(q7) A9 + f7(q7) A1o + Aui]
1) - @i Ssn + GCian] + (5 1 @)~ @lciCan
LG (@)SIC — g5 (@)PCiSi]dn} = 0, o1)
where

Ay = 20192/ (@) (2) — q1qalf (1) + f(02)°1C1Ca + [91f (92)” + @3/ (1)1,
Mo =2r{q1qaf () f (@) [f (a1) + F(@))(C1C = 1) = [/ (92)” + 63/ (41)']$152},
A =P {=20192f (1)’ F (q2)*(C1C2 = 1) + [g1f (92)* + @3/ (@1)*]S152}, (22)
Ay =1 (q1) = £(@2)][q1/ (q2)’C1S2 — qaf (1)*S1 Ca],
M3 = rqiglf (@1) = f(@))la1/ (92)°$1Co — gof (1) C1Sa).
The corresponding equation for symmetric waves (Eq. (3.8), LW, 2003) can be obtained from Eq. (21) by
replacing C: by S’ and S; by C, m, (m =1,2), and Eq. (3.9) of LW (2003) is the same as Eq. (22). It is noted

that other than the term r = y/y* all terms in Eq. (22) are related only to the outer layer.
When k, — oo the dispersion relation for a perfectly bonded interface is obtained from Eq. (19) as

2192/ (@) f (92) 41 + q1f (02)*[C18245 + C1Cads + 818,44 + S, Ca 45]
— @2 f (1) [S1Co 4y + $182 45 + C,Ca Ay + C18,45) = 0, (23)

and from Eq. (21) as

1S C311*(43)* Ao + £ (@3) A0 + Au] = G5C1 S 11" (a1) Ao + /7 (47) 1o + A
= (q0) = (@)la14:518: 412 + €1 G A1) = 0. (24)
The expression given in Eq. (3.7) of Rogerson and Sandiford (1997) for the perfectly bonded case contains

SOMmMe Minor errors.
When &, = 0 the dispersion relation for the fully slipping interface is obtained from Eq. (19) as

01/ (q2)°[C18:46 4 818,47 4 (C1Cy — 1) A5] — q2f (q1)*[S1C2 46 + (C1Cy — 1) A7 + 8518, 45] = 0, (25)
and from Eq. (21) as
[1(q}) = F(@)CiC A + (a1 (43)°S1Cs — q5f(q})°C; 831412 = 0. (26)

It is noted that Eqgs. (23) or (24) and (25) or (26) can also be obtained directly by separately considering the
perfectly bonded interface problem (Rogerson and Sandiford, 1997) and the slipping interface problem.



S. Leungvichcharoen et al. | International Journal of Solids and Structures 41 (2004) 6873-6894 6879

4. Analysis of dispersion relation

The similarity of the dispersion relations for anti-symmetric and symmetric waves shown in Section 3,
results in similar behavior for these two kinds of waves, which will be discussed in this section. The roots 43,
g5 of Eq. (4) can be written as

q%,qé%[zﬁ—é;\/<2ﬁ—é)2—4(a—é>} (27)

where ¢ = pv?/y is the non-dimensional square of the phase speed and & = a/y, f = /7. Similar expres-
sions for ¢;*> and g¢3%, for the inner layer are

i =5 |2 - ¢ = - i - )], (29)

where o = o /7%, B = B /y", & = p*v?/y* = aé and a = rp*/p. For brevity, in what follows the non-
dimensional square of the phase speed ¢ is referred to as squared phase speed.

In the present paper, the common factor ¢,¢»(q> — ¢2)’(¢;> — ¢3*) taken out from the denominator of Eq.
(17) leads to spurious roots of Eq. (21) given by

5:681:&3 when 611:00rfh:0>
¢=Cs,Cs3 = 2(/37* l+ o — 2ﬁ4[ 1), when ¢} = ¢3, (29)
& =Cn, 8 =2 -1+ a =2 +1), when ¢}> =gy
This is in contrast to the case of symmetric waves, which has a common factor ¢1924;¢; (g3 — q%)z(‘ffz - q5)
with an additional spurious root at & = &, = a* (when ¢j¢; = 0). Here &; and &, (&, and &,) are upper

bounds on the squared phase speed of pure surface waves propagating in a half space of the outer layer
(inner layer) material (Ogden and Sotiropoulos, 1995).

4.1. Low wavenumber limit kh — 0

When kh — 0 the thickness of the layers are very small compared to the wavelength. By considering
small argument expansions of the hyperbolic functions, the squared phase speeds for the imperfect interface
and perfectly bonded cases are obtained from Egs. (21) and (24) as

£A D[z — (1 —ro)’| +rla— (1 - 0)’]
0 aD +r ’

(30a)

and for the fully slipping case from Eq. (26) as
G =2B+1-0), & =& (30b)

The finite squared phase speed ¢\ agrees with Eq. (4.2) of Rogerson and Sandiford (1997) while &{})

corresponds to the fundamental mode of symmetric waves of an incompressible elastic layer with free

surfaces (see Eq. (4.5), Rogerson, 1997). The corresponding results for symmetric waves are (LW, 2003),
2D(B +1—ra) +r(f+1—0)

f(s) _ ,
>0 aD +r

o =2B+1-0), &) =2F+1-ro)a
Here it is seen that ééﬁ” = f(()sl). This has been verified by examining the displacement profiles of the com-

posite. At this squared phase speed, for anti-symmetric waves u; = constant and u, — 0 in the upper outer
layer (and the lower outer layer moves in the opposite direction) while u;,u, — 0 for the inner layer; for

(31)
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symmetric wave u; = constant and u, — 0 in the upper outer layer (and the lower outer layer moves in the
same direction) while u;,u, — 0 for the inner layer. In addition for anti-symmetric waves &5’ = & and
now u; — 0 and u, = constant for all layers.

Egs. (30) and (31) are the finite squared phase speeds of the lowest branches of the dispersion curves,
which have frequencies that tend to zero as kh — 0. The frequencies of higher modes which have infinite
squared phase speeds (¢ — oo) when kh — 0 are considered next. When & — oo expressions for ¢3, g3, ;>
and g3 can be obtained from Egs. (27) and (28) as

PR R e N L e )
25 a—1 62** 71 (32)
quz_“fJFzB*—l—%JrO(é’z), =14 r -l ;Z — 0.

It is easily seen that g, ¢ are imaginary while ¢, g; are real. By substituting Eq. (32) into Eq. (21),
introducing the non-dimensional frequency parameter Q = kk+\/¢ and considering small argument expan-
sions of the hyperbolic functions, the expression to determine the cut-off frequencies (Q<CA) > 0) is obtained
as

VaQ® sin(QWY) cos(vaDQ™) — k.[va cos(QWY) cos(vaDQM) — rsin(QP) sin(v/aDQ™M)] = 0.
(33)

Similar to the case of symmetric waves (LW, 2003) the cut-off frequencies obtained from Eq. (33) depend
only on the non-dimensional parameters a, D, » and ., and the equations for cut-off frequencies of the
perfectly bonded and fully slipping cases may also be deduced from this equation. For the fully slipping
interface QE:A) =nm, (n—3)n/(y/aD), (n=1,2,...) where nn corresponds to the cut-off frequencies for
symmetric waves propagating in the outer layer with free surfaces, and (n — 1)n/(\/aD) corresponds to the
cut-off frequencies for anti-symmetric waves propagating in the inner layer with free surfaces (see Egs.
(3.8¢) and (3.13c), Kaplunov et al., 2002).

4.2. High wavenumber limit kh — oo

When kh — oo the thickness of the layers are very large compared to wavelength and the propagation
behavior is similar to waves in a semi-infinite medium and two joined semi-infinite media. Hence for both
anti-symmetric and symmetric wave propagation the same high wavenumber limits are expected. The
behavior of the dispersion relation in this region depends on the roots g;, ¢», ¢} and g5 which may either
real, pure imaginary or complex conjugates which in turn depends on squared phase speed & and the

parameters o, f, o*, f* (see Appendix B).

4.2.1. Roots q;, q>, q; and g5 are real or complex conjugates with non-zero real part

When kh — oo, hyperbolic functions in the dispersion relation C,, S,, C: and S} — oo, (m = 1,2). For
anti-symmetric waves in the case of an imperfectly bonded interface, dividing Eq. (21) by C,C,C; C;, taking
the limit k4 — oo and removing the common factor (g, — qz)z(q’{ —q5), yields

Ra(é)IS(é) = 07 (34)

where R,(£) =0 and Is(¢) = 0 are the secular equations for the squared phase speeds of the Rayleigh
surface wave of the outer layer (Dowaikh and Ogden, 1990) and the Stoneley interfacial wave for fully
slipping half spaces given by

RO = +n+2=20+2B—3)n—(1—0), (35)
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I5(&) = (q1 + q2)R;,(&) + r(q] + 43)R4 (), (36)
in which
R =n 40+ 2 =2r0+ 28 — )" — (1 —ra)’, (37)

where 1 = +/a — & and " = Vo — al.
Similarly analyzing Eqgs. (24) and (26) yields

Re()Ip(¢) =0, (38)

for the perfectly bonded interface and Eq. (34) for the fully slipping interface, where /p(&) = 0, is the secular
equation for the squared phase speed of Stoneley interfacial waves for perfectly bonded half spaces
(Dowaikh and Ogden, 1991) given by

Ip(&) = "Ro(&) + Ry(E) + 2r(1 — q1q2) (1 — qi43) + r(q1 + 42) (¢} + 45) (0192 + 4145) = 0. (39)

In the above equation, Ry(¢) and Rj(&) are the Rayleigh wave equations (see Eqs. (35) and (37)) with zero
Cauchy stress (o = 0).

Eqgs. (34) and (38) were also obtained for the symmetric wave case in LW (2003). The roots of Egs. (35),
(36) and (39) (presented in different forms in Egs. (4.10) and (4.12) of LW (2003)) are denoted by &g, &g and
&p, respectively. In addition, Eq. (36) when there is no pre-stress, agrees with the secular equation of slip-
waves propagating in two different linear isotropic half-spaces in sliding contact (see Eq. (23), Barnett et al.,
1988).

4.2.2. At least one of the roots q;, q>, q; and q; is pure imaginary

When kh — oo the hyperbolic functions C,,, S,,, C;, and S, (m = 1, 2) with pure imaginary arguments are
finite and the dispersion relation Eq. (21) yields for all values of k, squared phase speeds ¢ that will tend to
the limiting squared phase speed of the bi-material composite £ (Rogerson and Sandiford, 2000), given by

¢ = min(&y, fi/a), (40)
where
_ )&= 5< 2B
&L= { b =28 —1+a—2p+1); a>2p (for outer layers), (41a)
e { & =2 -1+ Vo —2F 1 1); & >28 (for inner layer), (41b)

where & and & are limiting squared phase speeds of the outer layers and the inner layer, respectively.
Hence, there are four possible cases of limiting squared phase speeds of the composite, Case 1: & = &g;
Case 2: o = &sp; Case 3: &L = &, /a and Case 4: & = &, /a.

Comparing Eqgs. (34)—(41) with Section 4.2 of LW (2003) it is seen that the limiting squared phase speeds
when kh — oo for anti-symmetric and symmetric waves are the same. In the case of anti-symmetric waves,
the squared phase speed of the fundamental mode and the next higher modes are denoted ég) and éX’>
(n=2,3,...), and for symmetric waves, the squared phase speed of the fundamental mode and the next
higher modes are denoted as éél) and ég') (n=2,3,...), respectively. Hence, the limiting squared phase
speeds when ki — oo for the case of a perfectly bonded interface will be given by
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&l el oo min(Ep, &p), &V, EY — max(&y, &), EWLEY — éqp
n = 3,47 ey Whel’l bOth fR, iIP < éCL;

«(1 1 v n n P

g8 — &, &8 — &, n=23,..., when only & < &oy; @)
1 1 « n n

52)75(5) — CIp, éﬁx)aé(s) - éCL? I’l:2,3,..., When Only éIP < éCL;

553)7 é(s") — ¢, n=1,2,..., when & = ¢ and &p does not exist or when both

&R, Ep do not exist.

For the fully slipping and the imperfect interface cases, the squared phase speed &;p above is replaced by &g.

5. Stability considerations

In this section, stability issues for both anti-symmetric and symmetric waves are discussed, as the latter
case was not considered in LW (2003). For a particular mode when ¢ < 0, the phase speed v is pure
imaginary and instead of harmonic waves travelling in the x-direction, the displacement and pressure
increments given by Eq. (3) will correspond to standing waves with amplitudes that grow exponentially with
time, i.e., an unstable state. Harmonic waves travelling in the x;-direction will be stable for a particular
mode when & > 0, while £ = 0 corresponds to the neutral state where static modes of incremental defor-
mation occur. For a given pre-stressed state the layered composite can be considered to be stable for wave
propagation in x;-direction, if the squared phase speed ¢ of all branches are positive for all kh.

The strong ellipticity conditions (Eq. (6)) for the outer and inner layer materials yield the inequalities,

>0, p>—a, a@>0, p>—-Va. (43)

Considering the limiting squared phase speeds when k2 — oo given by Egs. (40)—(41) together with Eq. (43),
yields that £ > 0. As noted earlier in Section 4.2.2 since the branches of the dispersion curves (which may
or may not include the lowest modes) tend to -, when kh — oo, if the inequalities given by Eq. (43) is
violated, unstable modes will exist. However, since the squared phase speed of the lowest modes could be
less than &, satisfying the inequality given by Eq. (43) does not guarantee that all modes will be stable, i.e.,
the strong ellipticity condition is necessary but insufficient for stable wave propagation.

The bifurcation equation is obtained from the dispersion relation by setting the squared phase speed ¢ to
zero and yields the neutral curves that separate the stable and unstable regions associated with the fun-
damental mode or the next lowest mode. Substituting ¢ = 0 into Eq. (17) for anti-symmetric waves and Eq.
(18) for symmetric waves, two quartic equations

oMot + oMV + 0V + dVe + oY =0, (44a)

Ve + 06 + V6 + 05 + 0¥ =0, (44b)

are obtained, where <I>E,A) and <Dfls) are functions of @, 8, a*, p*, kh, k., r, a and D. For the perfectly bonded
case, the bifurcation equations given by Eq. (44) reduce to quadratic equations (see Eq. (6.1) of Rogerson
and Sandiford (1997) for anti-symmetric waves and Eq. (5.1) of Rogerson and Sandiford (1996) for
symmetric waves), while for the fully slipping interface case, Eqs. (44a) and (44b) remain as quartic
equations.
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5.1. Stable range of o as kh — 0

The solutions of Eq. (44) as kh — 0 can be computed directly from Egs. (44) but are readily obtained
from Egs. (30) and (31) with the squared phase speed set to zero.

For anti-symmetric wave propagation in an imperfectly bonded or perfectly bonded layered composite,
from Eq. (30a) the stable range for 55‘“ > 0 can be obtained as

oM <o <al™, (45)
where
_ 1+D ra+Dw D[ 1—r\’
+(A) (A)
= + - — . 46
% % 1+rD \/r(lJer) r(1+rD) (46)

For the fully slipping interface case from Eq. (30b) the stable range for éfﬁ‘) > 0 and 58’3) >01is

agz(A) <0< min(afﬁ‘), GSZ(A)), (47)
where
N A A (A (A
aél)zﬁ—i—l, 0'32( ):ag( ), 002( ):ao( ). (48)

In addition, if ¢ > max(oé?), o™y then both &Y and é(()/;) are negative.

It is seen from Eq. (46) that if there is no real value of ooi(A) i.e., when

ra+Dw D 1-r)\
—— 4
r(l+rD) r (1—|—rD) <0, (49)

then from Eq. (30a) it can be shown that

£® —r[1 —o+D(1 —ro)
0 (I +rD)(aD+r)

<0, (50)

and hence for all &, one of the lowest modes will be unstable.
For symmetric waves, in an imperfectly bonded or perfectly bonded layered composite, from Eq. (31a)
the stable range for fés> >0is

o<ay, (51)
where
D +1 p+1

r(l + D)

For the fully slipping interface case, Eq. (31b) yields the stable range of ¢ for g“ésf > 0 and ééi) >01is

o <min(al), o)), (53)
where
S A S .
081) = ‘781)7 ‘782) = +1)/r (54)

Similar to the anti-symmetric wave case i.e., if ¢ > max(a_,, aés)) then ¢ < 0 and &) < 0.
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5.2. Stable range of ¢ as kh — oo

The limiting squared phase speeds for both symmetric and anti-symmetric waves as kh — oo are the
same, i.e., g, &p or &qp, for perfectly bonded interface case and &y, &g or & for imperfectly bonded and
fully slipping interface cases (see Section 4.2). However, for composites which already satisfy the strong
ellipticity conditions, &q; is always positive and the secular equation used to obtain &;p does not depend on
o, therefore the stable ranges of ¢ as kh — oo may be computed by just considering Eq. (35) for perfectly
bonded case, and considering Eqs. (35) and (36) for imperfectly bonded and fully slipping interface cases
only.

For the perfectly bonded interface case, from Eq. (35) the stable range for & > 0 is

or < 0 < og, (55)

where

ofon = 1 —Va+ /25 + 2BV (56)

This is the required range of values of ¢ for the existence of a unique surface wave in an incompressible
elastic half-space (see Eq. (6.13) of Dowaikh and Ogden (1990)).

While for the fully slipping and the imperfect interfaces cases, the stable range for non-negative values of
&r and &g should be

max(og, 05g) < 0 < min(oy, 075), (57)

where

1

(A -Va) + 01 =Va) ) [0 =Va) + (1= Va) 2_ [Cayo;;wc*o—ﬁaﬂ
r+ r+ r(rl+ ) ’

T —
015,015 =

(58)

and

(=\B+Va, =\ +VE, oxox =1V /20 + 28V

It can be shown that when there is no real value of o35 that &g < 0 and one of the lowest modes will be
unstable.

6. Numerical results

The examples discussed in this section correspond to the four examples considered for symmetric waves
in LW (2003), where incompressible elastic materials with Mooney—Rivlin and Varga strain energy func-
tions were used.

The strain energy function W™R) of Mooney-Rivlin material (Ogden and Sotiropoulos, 1997) is

1 1 _ 2.
wMR) — Eul(ﬁ + 5+ 25-3) +5u2(/112 + 05750 = 3), (59)
where y, and u, are material constants. Using Eq. (5) the parameters & and f of this material are expressed
as

a=22/2% 2p=a+1. 60
1 2
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The strain energy function W) of Varga material (Ogden and Sotiropoulos, 1997) is
WY = 2u(2 + Jo+ 43 — 3), (61)
where p is a material constant and from Eq. (5) the parameters & and f of this material are given by
a=2/4, B=l/l (62)

The parameters a* and f* for the inner layer are similarly obtained.

The dispersion curves can be obtained either by solving Eq. (21) and disregarding non-dispersive spu-
rious roots (see Eq. (29)), or directly from Eq. (17), where when ¢ is equal to any spurious root, ’'Hopital’s
rule is employed. Here the latter method is used to obtain the dispersion curves. In the case of dispersion
curves the results for symmetric waves are only plotted for comparison purposes and the discussion is
mostly regarding anti-symmetric waves.

The neutral curves are plotted from Eqgs. (44). But when the numerator and denominator of each
coeflicient <D§A"S)(i =0,...,4) vanish (which corresponds to a spurious root ¢ = 0 in Eq. (29)) 'Hopital’s
rule is used to obtain the neutral curves. For example, it can be shown from Eq. (29) that either &g, = 0 or
¢y = 0 when @ = %, which occurs for Varga material and which also occurs for the equi-biaxial defor-
mation state for any material where & = § = 1. As mentioned in Section 5, Eqs. (44) reduces to quadratic
equations for the case of a perfectly bonded interface, hence at most two neutral curves may exist; while for
the fully slipping and imperfect interface cases at most four neutral curves may exist.

In Examples 1-4 for a given state of pre-stress the parameters a, f5, a*, f* are computed while the non-
dimensional parameters r, a, g, k, and D are prescribed. For each example the shear spring parameter is
prescribed as k., = 0,1 and oo, and the squared phase speeds of the first sixteen modes EX” and f(s’”,
(n=1,2,...,16) are plotted in semi-log scale to clearly show the low wavenumber limits. In addition to
examine the cut-off frequencies the frequencies of the first sixteen modes QS{') and Q(S”), (n=1,2,...,16) are
also plotted. The limiting squared phase speeds calculated from Egs. (30), (31), (35)—(37), (39) and (41)
are given in Table 1. Stability issues are explored by plotting neutral curves where the limiting values for
these neutral curves as kA — 0 and kh — oo are computed from Egs. (46), (48), (52), (54), (56) and (58) and
given in Table 2.

Example 1. Both inner and outer layers are equi-biaxially deformed in (x;x,)-plane i.e., 4, = 4, = A and
A} = 25 = 2" and from Section 2 for any strain energy function & = § = &* = * = 1. The other prescribed
parameters are » = 0.25, a = 1.25, ¢ = —1.0 and D = 1. This example corresponds to Case 3 in Section
4.2.2 with a limiting squared phase speed of the composite ¢y = &g, /a = 0.8,

The dispersion curves are shown in Fig. 2 and it is seen from Fig. 2(a)—(c) that the squared phase speed of

the fundamental mode of anti-symmetric waves éx) is not always positive because é(()A) = —0.8751in Table 1,
Table 1
Limits of non-dimensional squared phase speed &
kh — 0 kh — oo
&y R R & Gifa &pla da & &w &
Example 1 -0.875 6.0 4.0 3.6 12 - 0.8° - 0.8 0.568 0.782 0.663
Example 2 0.743 5.0 1.892 1.406 1? - - 1.25° 1.0 0.771 - -
Example 3 1.255 5.441 1.144 0.606 2411* - - 0.813°*  0.813 2.354 - 0.803
Example 4 1.674 7.7 7.85 8.0 - 4.4* - 5.0° 4.4 3.937 - 4.157

LA (A S A
Ct()z) = C<(> " and 55)1) = 52)1)-

¢
béZ/a.
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Table 2
Limits of non-dimensional Cauchy stress ¢ for neutral curves
kh — 0 kh — oo
o " o oy o o R ok Iis ais
Example 1 0 32 2 5 8 -2 2 -4 4
Example 2 -1.236 3.236 2 3 4 -2 2 —4.577 3.113
Example 3 -1.314 2.456 2.721 2.573 2.425 —3.766 2.641 —4.874 2.500
Example 4 -1.176 3.176 3.1 3.175 3.25 =53 3.1 —5.523 3.176
aoiz(A) = aoi(A)and aésl) = af)’?).

0.01
(b)

25

20F.
15F

10k

(d) (e)

Fig. 2. Dispersion curves of the fundamental mode and next fifteen modes of Example 1. (a)-(c) Non-dimensional squared phase speed
¢, (d)—(f) non-dimensional frequency €; solid lines for anti-symmetric waves and dashed lines for symmetric waves.

indicating that the fundamental mode is unstable for a certain range of k4. When kh — 0 for &, > 0,

U — 00 (n=2,3,...), while for the fully slipping case &) — &) and &0’ — 0o (n=3,4,...). It is also
seen from Fig. 2(c) that in the case of the fully slipping interface the squared phase speed of one mode of the
anti-symmetric waves and one mode of the symmetric waves tend to the same hmlt ie., & = ¢l When
kh — oo since, &g < &p < & and &y < &g < &cr, for the perfectly bonded case é y — Cr, & A) — &p and
5(” — &L (n= 3 ,4,...) and for the imperfectly bonded and fully slipping interfaces cases 55\” — &R,
f v — &g and f — &c (n=3,4,...). The frequency plots given in Fig. 2(d)-(f) show that when kh — 0
for all values of k, the frequency of the fundamental mode Q " has no real value, which corresponds to the
negative limiting squared phase speed 50 = —0.875. The frequen01es of the other modes tend to the cut-off
frequencies calculated from Eq. (33), except when &, = 0 (Fig. 2(f)), the frequency of the second mode

f) — 0, which corresponds to the other finite limiting squared phase speed 53’1“ = 6.0. From Fig. 2(f) it is

seen that half of all of the modes of anti-symmetric waves have the same cut-off frequencies as symmetric
waves since QU = nz, (n — Yn/(y/aD) and QF = nm,nn/(/aD), (n=1,2,...).
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Fig. 3. Neutral curves corresponding to Example 1. (a)—(c) Anti-symmetric waves, (d)—(f) symmetric waves; shaded area is the region
where all modes are stable.

The neutral curves for anti-symmetric and symmetric waves are shown in Fig. 3(a)-(c) and (d)—(f),
respectively. Region (I) is the stable region (shaded area) where all modes have positive squared phase
speeds. In region (II) only the fundamental mode has a squared phase speed which is negative, while both
the fundamental mode and the next lowest mode have negative squared phase speeds in region (III). The
limiting values of ¢ are given in Table 2. When k% — 0, in the case of anti-symmetric waves, the finite stable

range for perfect and imperfect interfaces is o*o( )< o< a+(A> and for a fully slipping interface is

0'02<A)( O'0< N<o< oél ; while for symmetric waves the stable range for perfect and imperfect interfaces
iso < af)s> and for a fully shppmg interface is 0 < 001 When kh — oo, both kinds of waves have the same
stable range, since o5 < oy and oy < g5, o < 0 < o for all k.. For k, = 0, 1 and oo the numerical results
indicate that if 0 < ¢ < 2 anti-symmetric wave propagation is stable, while symmetric wave propagation
will be stable if —1.738 < ¢ < 2. In Example 1, the non-dimensional Cauchy stress ¢ = —1.0 and when
kh — 0, éés) is finite while .f(()A) does not exist. This behavior will also be reflected in the neutral curves (see
Fig. 3) where when ¢ = —1.0 for anti-symmetric waves, region (I) does not exist for 0 < ki < khy where khg
depends on &, and 0.48 < khy < 1.14 while for symmetric waves, region (I) exists for all kh.

Example 2. The outer layers are equi-biaxially deformed in (x;x,)-plane i.e., & = f = 1 and the inner layer is
Varga material in a state of plane strain i.e., 2; = 1 and 2} = ;' = * which yields &* = 2" and f* = 2™
Here A" is prescribed as 2* = v/3 which yields a* = 9 and * = 3 and the other prescribed parameters are
r=1,a=64, 0= —-0.5and D = 1. This example corresponds to Case 1 in Section 4.2.2 with a limiting
squared phase speed & = &g, = 1.0.

The d1spers10n curves are shown in Fig. 4. From Fig. 4(a)-(c) it is seen that when kh — 0 for
k. >0, EA — 50 and 6 oo (n=2,3,...), while for the fully slipping case éA — Goz , éA f( and

n)

A — oo (n=34,..). When kh — oo, since there are no real values of &p and &g, and &g < &qp (see
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Fig. 4. Dispersion curves of the fundamental mode and next fifteen modes of Example 2. (a)-(c) Non-dimensional squared phase speed
¢, (d)—(f) non-dimensional frequency €; solid lines for anti-symmetric waves and dashed lines for symmetric waves.

Table 1); ﬁAl — &g and é/(' — EcL (n=2,3,...) for all values of k. The frequency plots in Fig. 4(d)—(f)
show that when k% — 0 the frequencies of all modes tend to the cut-off frequencies calculated from Eq. (33),
except in Fig. 4(d) and (e) for k, > 0 where Q( —> 0 correspondlng to the limiting squared phase speed
50 = 0.743; and in Fig. 4(f) for k, =0 where Q — 0 and Q — 0 corresponding to the two limiting
squared phase speeds 502 =0.743 and 501 = 5.0, respectwely

Fig. 5, shows the neutral curves where region (I) in Fig. 5(a)—(c) and Fig. 5(d)—(f) is the stable region for
anti-symmetric waves and symmetric waves, respectively. For &, = 0, 1 and oo the numerical results indicate
that if —1.236 < ¢ < 2 anti-symmetric wave propagation is stable while if —1.796 < ¢ < 2 symmetric wave
propagation will be stable. In this example since the non-dimensional Cauchy stress ¢ = —0.5 both types of
waves are stable.

Example 3. The primary deformations of both inner and outer layers are plane strain deformations in
(x1x2)-plane ie., 23 =1, ) = )gl =/ A;=1and 4] = i;’l = /*. The outer and inner layers are Mooney—
Rivlin and Varga materials, respectively, which yield & = 4%, 28 = 2* + 1, a* = 2** and " = **. Here 4 and
J* are prescribed as 4 = 1.25 and A" = 2.25 which will give & = 2.441, f = 1.721, %" = 25.629 and " = 5.063
and the other prescribed parameters are r = 2.5, a = 20, ¢ = 0 and D = 1. This example corresponds to
Case 4 in Section 4.2.2 with a limiting squared phase speed of the composite & = &, /a = 0.813.

From Fig. 6(a)—(c) it is seen that when k4 — 0, the behavior is similar to Example 2. The limiting values
in Table 1 show that there is no real value of &;p and &g < &¢p < &gr; therefore, when kh — oo, for the
perfectly bonded case 5;’:) — & (n=1,2,...), while for the imperfectly bonded and the fully slipping
interface cases 51&” — &g and éE{’) — EcL (m=2,3,...). However, since &g = 0.803 and &¢; = 0.813 are very
close together, separation of the limits of fundamental mode and the next higher modes are not clearly seen
in Fig. 6(b) and (c). The frequency plots in Fig. 6(d)—(f) show that the behavior is similar to Example 2
when ki — 0 and the frequencies of all modes tend to the cut-off frequencies calculated from Eq. (33),
except the modes which correspond to the finite limiting phase speeds as k2 — 0.
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Fig. 5. Neutral curves corresponding to Example 2. (a)-(c) Anti-symmetric waves, (d)—(f) symmetric waves; shaded area is the region
where all modes are stable.
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Fig. 6. Dispersion curves of the fundamental mode and next fifteen modes of Example 3. (a)-(c) Non-dimensional squared phase speed
¢, (d)—(f) non-dimensional frequency €; solid lines for anti-symmetric waves and dashed lines for symmetric waves.

The neutral curves and stable regions are shown in Fig. 7 and the limiting values of ¢ are shown in Table
2. In this example, since o, W< a(()?), in the case of anti-symmetric waves, the finite stable range when
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Fig. 7. Neutral curves corresponding to Example 3. (a)-(c) Anti-symmetric waves, (d)—(f) symmetric waves; shaded area is the region
where all modes are stable.

(A) +(A

kh — 0 for all values of £, is 6, "’ < 0 < 0, ; while for symmetric waves, the stable range for perfect and
imperfect interface conditions is ¢ < o(()s) and for the fully slipping interface is ¢ < ag). When kh — oo, both
kind of waves have the same stable range. Since ;3 < o and o}5 < oy, the stable range is oy < ¢ < o} for
perfectly bonded case, and oy < ¢ < agj5 for imperfectly bonded and fully slipping interface cases. For
ke = 0, 1 and oo the numerical results indicate that if —1.314 < ¢ < 2.456 anti-symmetric wave propagation
is stable, while if —2.705 < ¢ < 2.425 symmetric wave propagation will be stable. Since, ¢ = 0, in Example
3 both anti-symmetric and symmetric waves will be stable. In the imperfectly bonded and fully slipping
interface cases when ¢ > 0 and when k# increases, it is seen that region (II) decreases rapidly.

Example 4. Both inner and outer layers are Varga materials, the outer layers are pre-stressed by uniaxial
tension in xj-direction i.e., .y = A and A, = A3 = 2~'? while the inner layer is in a state of plane strain in
(x1x,)-planeice., 2; = land 27 = 237" = 1" which yield & = 2°, p = 2%, @ = 2™ and " = 2. Here 4 and /"
are prescribed as 1 = v/4.41 and * = 1.5 which results in & = 4.41, f = 2.1, &* = 5.063 and f* = 2.25 and
the other prescribed parameters are » = 1,a = 1, 0 = —0.75 and D = 1. This example corresponds to Case 2
in Section 4.2.2 with a limiting squared phase speed of the composite &q; = &g, = 4.4.

From Fig. 8(a)—(c) it can be seen that when k4 — 0, the behavior is similar to Examples 2 and 3.
Since there is no real value for &p and & < &g < &, when kh — oo, for the perfectly bonded case
52) — &g and fg‘) — &o (n=2,3,...), while for the imperfectly bonded and the fully slipping interface
cases éf,}) — &R, ff) — ¢ and fﬁf) — &oL (n=3,4,...). The frequency plots in Fig. 8(d)—(f) show that
when ki — 0 the frequencies of all anti-symmetric modes tend to the cut-off frequencies calculated from Eq.
(33), except the modes which correspond to the finite limiting phase speeds as k4 — 0. In addition, since in
this example /aD = 1, the cut-off frequencies for k, = 0 are for anti-symmetric waves nn/2 (n=1,2,...)
and for symmetric waves nm (n = 1,2,...) where pairs of symmetric modes will have the same cut-off
frequency.
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Fig. 8. Dispersion curves of the fundamental mode and next fifteen modes of Example 4. (a)—(c) Non-dimensional squared phase speed
¢, (d)—(f) non-dimensional frequency Q; solid lines for anti-symmetric waves and dashed lines for symmetric waves.
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Fig. 9. Neutral curves corresponding to Example 4. (a)-(c) Anti-symmetric waves, (d)—(f) symmetric waves; shaded area is the region

where all modes are stable.

The neutral curves and the stable regions are shown in Fig. 9. In the case of anti-symmetric waves, the
l<o< o ) and for fully slipping

stable range when kh — 0 for perfect and imperfect interface is o, @
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interface is agz(A)(: g,") <0< ag’?); while for symmetric waves, the stable range for perfect and imperfect

interface conditions is ¢ < o(()s) and for fully slipping interface is ¢ < af)sl‘). When kh — oo, both kind of
waves have the same stable range oy < o < o} for all values of k,. In addition, for £, =0, 1 and oo the
numerical results indicate that if —1.176 < ¢ < 3.1 anti-symmetric wave propagation is stable, while
symmetric wave propagation will be stable if —3.414 < ¢ < 3.1. In this example since ¢ = —0.75 both types
of waves are stable. For the imperfectly bonded and the fully slipping interface cases for both tensile and
compressive Cauchy stress g, when k4 increases region (II) decreases rapidly.

(A))

7. Summary and conclusions

In the present analysis, the dispersive behavior of in-plane time harmonic anti-symmetric waves in a pre-
stressed incompressible symmetric layered composite with imperfectly bonded interfaces is studied. The
dispersion relation obtained for anti-symmetric waves differs from the corresponding case for symmetric
waves, through the elements of the propagator matrix associated with the inner layer. The limiting squared
phase speeds at both low and high wavenumber limits, the cut-off frequencies and stability considerations
are discussed in detail.

The behavior of the dispersion curves for anti-symmetric waves is for the most part similar to that of
symmetric waves at the low and high wavenumber limits. At low wavenumber limit, depending on the pre-
stress for perfectly bonded and imperfectly bonded interfaces at most only one finite limiting squared phase
speed may exist, while for the fully slipping interface case at most two finite limiting squared phase speeds
may exist. For higher modes which have infinite squared phase speeds when k%2 — 0, the equation to obtain
the cut-off frequencies is derived. At high wavenumber limit as k4 — oo, both anti-symmetric and sym-
metric waves tend to the same limiting squared phase speeds.

For both anti-symmetric and symmetric waves, the bifurcation equations obtained for imperfect
interface and fully slipping interface cases are in the form of quartic equations of ¢, while for the perfectly
bonded case quadratic equations are obtained. Hence, in general for layered composites with imperfect or
fully slipping interfaces there are four branches of neutral curves, while for the perfectly bonded case there
are only two branches. The stable region is the area between the inner branches, because if ¢ is outside this
region the fundamental mode will have a negative squared phase speed, while when ¢ is beyond the outer
branches two negative squared phase speeds will be obtained for the fundamental and the next lowest
modes. The stable ranges of ¢ at the low wavenumber limit for the imperfect interface case are the same as
for the perfectly bonded case, while at the high wavenumber limit the stable ranges of imperfect bonded
case are the same as for the fully slipping interface case. For all k., symmetric wave propagation is stable in
the low wavenumber region even if the composite is pre-stressed by large compression, while anti-sym-
metric waves will not be stable in the low wavenumber region if the composite is pre-stressed beyond the
finite stable range.
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Appendix A. The elements of propagator matrix

The elements of propagator matrix P(%) are given by

P = 90192[f (42)C2 — f(q1) Ci]x 7, Pi = 90192091/ (92)S1 — q2f (q1) Sk,
Pi3 = q1q2[q25> — 1 S1]k 7!, Py = qiqa[Cr — G,
P =9[q1f(42)S2 — qof (@) 1]k, Py = yq1q:[f (q2)C1 — f(q1) Ca]r ™,
Py; = —Py, Py = (‘]2S1 - qlSZ)Kila (A.1)
Py =791 (02)°S2 — @of (1)), Po=7q192f (q1)f (q2)[C1 — CaJc ™, .
Py = Py, Py = —Py,
Py = —Py, Pu = P qiqa[q1f (@2)’S1 — qof (q1) Sa) !,
Py = 90192(q2/ (q1)S2 — 1 f ()], Paa = Poa,
where
flgn) =1+4q, —0, C,=cosh(g,kh), S, =sinh(g.kh), (m=1,2), A2)

c=02/7, Kk=qq(q; —a).

The elements of propagator matrix P*(d) are obtained from Eq. (A.l) by interchanging P; < Py,
Gn = @ [(qn) < [7(q.,), Cp = C,, Sy = S, v < 7" and k < k* where
f(q,) =14q; —ro, C, =cosh(qg,Dkh), S, =sinh(q,Dkh), (m=1,2),

r=y/y, D=d/h (A-3)

Appendix B. Roots ¢, 45, ¢; and ¢}

The roots ¢, g2, ¢} and ¢5 calculated from Eqs. (27) and (28) may be either real, complex or pure
imaginary (Table 3).

Table 3
Roots ¢, g2, ¢} and g
a<2p %> 2p
0<¢<is® E={q &1 <& 0<¢<in® {={ln & < &<y fa1 <€
q RorC I I RorC I I 1
@ RorC RorC RorC RorC 1 I RorC
o <2p a > 2p
0<& <&yt &=¢& &y <& 0<& <&y =&, o <& & <¢
q; RorC I I RorC I I I
@ RorC RorC RorC RorC I I RorC

R—real, C—complex and I—pure imaginary. ~ ~ ~
#The strong ellipticity conditions Eq. (43) ensure that &5 > 0 when o< f8; &5, > 0 when & > f8; &, > 0 when a" < p* and &, >0
when a* > f*.
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