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Abstract

The effect of an imperfect interface on the dispersive behavior of in-plane time-harmonic symmetric waves in a pre-

stressed incompressible symmetric layered composite, was analyzed recently by Leungvichcharoen and Wijeyewickrema

(2003). In the present paper the corresponding case for time harmonic anti-symmetric waves is considered. The bi-

material composite consists of incompressible isotropic elastic materials. The imperfect interface is simulated by a

shear-spring type resistance model, which can also accommodate the extreme cases of perfectly bonded and fully

slipping interfaces. The dispersion relation is obtained by formulating the incremental boundary-value problem and

using the propagator matrix technique. The dispersion relations for anti-symmetric and symmetric waves differ from

each other only through the elements of the propagator matrix associated with the inner layer. The behavior of the

dispersion curves for anti-symmetric waves is for the most part similar to that of symmetric waves at the low and high

wavenumber limits. At the low wavenumber limit, depending on the pre-stress for perfectly bonded and imperfect

interface cases, a finite phase speed may exist only for the fundamental mode while other higher modes have an infinite

phase speed. However, for a fully slipping interface in the low wavenumber region it may be possible for both the

fundamental mode and the next lowest mode to have finite phase speeds. For the higher modes which have infinite

phase speeds in the low wavenumber region an expression to determine the cut-off frequencies is obtained. At the high

wavenumber limit, the phase speeds of the fundamental mode and the higher modes tend to the phase speeds of the

surface wave or the interfacial wave or the limiting phase speed of the composite. The bifurcation equation obtained

from the dispersion relation yields neutral curves that separate the stable and unstable regions associated with the

fundamental mode or the next lowest mode. Numerical examples of dispersion curves are presented, where when the

material has to be prescribed either Mooney–Rivlin material or Varga material is assumed. The effect of imperfect

interfaces on anti-symmetric waves is clearly evident in the numerical results.
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1. Introduction

The dispersive behavior of time harmonic in-plane symmetric waves in a pre-stressed incompressible

symmetric layered composite with imperfect interface conditions, has been studied recently by Leung-
vichcharoen and Wijeyewickrema (2003), henceforth referred to as LW (2003). At the interface, stress

increments and the displacement increment normal to the interface were assumed to be continuous, while

the shear stress increment was assumed to be proportional to the jump in tangential displacement incre-

ments. The linear shear spring type resistance model employed to simulate the imperfect interface in LW

(2003) can easily accommodate the extreme cases of perfectly bonded and fully slipping interfaces. In the

present paper the corresponding case for time harmonic anti-symmetric waves is considered.

Previous work in the area of wave propagation in pre-stressed incompressible layers (Ogden

and Roxburgh, 1993; Rogerson and Fu, 1995; Rogerson, 1997) and layered composites (Rogerson and
Sandiford, 1996, 1997, 1999, 2000) are discussed in LW (2003) and will not be further elaborated on in this

paper. Other recent related research is an extension of the work reported by Kaplunov et al. (1998) on

asymptotically consistent theory for linear elastic thin-walled structures, to pre-stressed elastic layer

problems, see for e.g. Kaplunov et al. (2000) for long-wave low-frequency motion, Pichugin and Rogerson

(2001), Kaplunov and Rogerson (2002) and Nolde and Rogerson (2002) for long-wave high-frequency

motion and Kaplunov et al. (2002) for short-wave high-frequency motion.

The basic equations of infinitesimal harmonic wave propagation in pre-stressed, incompressible, elastic

media are given in Section 2. Using the propagator matrix, the dispersion relation for anti-symmetric
motion is obtained in Section 3. It is shown that the dispersion relations for anti-symmetric and symmetric

waves, differ from each other only through the elements of the propagator matrix associated with the inner

layer. In Section 4 some interesting common features of these two kinds of waves viz. the asymptotic limits

at low and high wavenumber limits are discussed. For the higher modes which have infinite phase speeds in

the low wavenumber region, cut-off frequencies are investigated. Stability considerations not considered in

LW (2003) are explored in detail for both anti-symmetric and symmetric waves in Section 5. Numerical

examples using the same material parameters and pre-stressed conditions used in LW (2003), are presented

in Section 6, where dispersion curves and neutral curves are plotted. In the case of dispersion curves the
results for symmetric waves are only plotted for comparison as these curves were discussed in detail in LW

(2003).
2. Basic equations

The equations for infinitesimal time-harmonic wave propagation in pre-stressed incompressible elastic

media (see Dowaikh and Ogden, 1990; Rogerson and Sandiford, 1997; LW, 2003) are given in this section.
Consider a homogeneous, incompressible, isotropic elastic body with an initial unstressed state Bu, which

after being subjected to pure homogeneous strains has the new configuration Be, the pre-stressed equi-

librium state. A Cartesian co-ordinate system Ox1x2x3, with axes coincident with the principal axes of strain

is chosen for configuration Be. Let u be a small, time dependent displacement superimposed on Be. For the

plane strain incremental problem considered here, the non-zero displacement components ui, (i ¼ 1; 2) are
independent of x3. The incremental equations of motion where the linearized incompressibility condition

ui;i ¼ 0 has been used is
A01111u1;11 þ ðA01122 þA02112Þu2;21 þA02121u1;22 � p;1 ¼ q€u1;

ðA01221 þA02211Þu1;12 þA01212u2;11 þA02222u2;22 � p;2 ¼ q€u2;
ð1Þ
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in which A0ijkl are the components of the fourth-order tensor of first-order instantaneous moduli of

incompressible isotropic elastic material which relates the nominal stress increment tensor and the defor-

mation gradient increment tensor and can be given in terms of derivatives of the strain energy function

(Ogden, 1984, p. 344), p the incremental pressure, q the material density and superimposed dot and comma
indicate differentiation with respect to time t and the spatial coordinate component in Be, respectively.

The relevant components of the nominal stress increment tensor in the configuration Be are expressed as,
s021ðx1; x2; tÞ ¼ A02121u1;2 þ ðA02112 þ �pÞu2;1;
s022ðx1; x2; tÞ ¼ A02211u1;1 þ ðA02222 þ �pÞu2;2 � p;

ð2Þ
where �p ¼ A02121 �A01221 � r2 (Rogerson and Fu, 1995) is a quasi-static pressure in which r2 is the

principal Cauchy stress in the x2-direction in Be.

The displacement and pressure increments for harmonic waves propagating in x1-direction, may be

expressed as
ðu1; u2; pÞ ¼ ðA1;A2; kP Þeqkx2eikðx1�vtÞ; ð3Þ

where k is the wavenumber, v the phase speed, A1, A2 and P are unknown coefficients and the parameter q is
to be determined. Substituting Eq. (3) into Eq. (1) and using the linearized incompressibility condition,

yields a system of homogeneous equations for which a non-trivial solution exists provided that
cq4 � ð2b � qv2Þq2 þ ða � qv2Þ ¼ 0; ð4Þ

where a ¼ A01212, 2b ¼ A01111 þA02222 � 2A01122 � 2A01221 and c ¼ A02121 and the four roots of q are

given by �qm (m ¼ 1; 2). From the definition of instantaneous elastic moduli of incompressible isotropic

elastic material, the parameters a, b and c are expressed in terms of the strain energy function W and the

principal stretches k1 and k2 as (Dowaikh and Ogden, 1991),
ak2
2 ¼ ck2

1 ¼ ðk1W1 � k2W2Þk2
1k

2
2=ðk

2
1 � k2

2Þ;
2b þ 2c ¼ k2

1W11 þ k2
2W22 � 2k1k2W12 þ 2k2W2;

ð5Þ
where Wi ¼ oW =oki, Wij ¼ o2W =okiokj, ði; j ¼ 1; 2Þ and when k1 ¼ k2 ¼ k, Eq. (5) reduces to

a ¼ b ¼ c ¼ 1
2
kðkW11 � kW12 þ W1Þ. In addition, the strong ellipticity conditions (Dowaikh and Ogden,

1990)
a > 0; c > 0; b > � ffiffiffiffiffi
ac

p
: ð6Þ
are necessary for stable in-plane harmonic wave propagation in the pre-stressed elastic material, and will be

considered in Section 5 when the stability criteria of wave propagation in layered composites are discussed.

In order to obtain the propagator matrix, the incremental displacements and stresses in Eqs. (2) and (3)

are written in the form of a 4· 1 vector as
ðu1; u2; s021; s022ÞT ¼ ½U1ðx2Þ;U2ðx2Þ; S021ðx2Þ; S022ðx2Þ	Teikðx1�vtÞ: ð7Þ

From Eq. (7) it can be shown after some manipulation that
yðx2Þ ¼ HEðx2Þa; ð8Þ

where yðx2Þ is a displacement–stress increment vector and Eðx2Þ is a diagonal matrix given by
yðx2Þ ¼
�
� iU1ðx2Þ;U2ðx2Þ;

S021ðx2Þ
ik

;
S022ðx2Þ

k

�T
;

Eðx2Þ ¼ diagðeq1kx2 ; e�q1kx2 ; eq2kx2 ; e�q2kx2Þ;
ð9Þ
and a is a vector of arbitrary constants and H is a 4·4 matrix independent of position x2 defined by
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a ¼ ðAð1Þ
2 ;Að2Þ

2 ;Að3Þ
2 ;Að4Þ

2 ÞT; H ¼

q1 �q1 q2 �q2
1 1 1 1

cf ðq1Þ cf ðq1Þ cf ðq2Þ cf ðq2Þ
cq1f ðq2Þ �cq1f ðq2Þ cq2f ðq1Þ �cq2f ðq1Þ

2
664

3
775; ð10Þ
where f ðqmÞ ¼ 1þ q2m � r; ðm ¼ 1; 2Þ and r ¼ r2=c.
The vector a is eliminated from Eq. (8) by introducing the vector yð�x2Þ at some location x2 ¼ �x2 to obtain
yðx2Þ ¼ HEðx2 � �x2ÞH�1yð�x2Þ ¼ Pðx2 � �x2Þyð�x2Þ: ð11Þ

The matrix Pðx2 � �x2Þ is the propagator matrix (Gilbert and Backus, 1966; Rogerson and Sandiford, 1997),

cf. Appendix A.
3. Formulation of the problem

The pre-stressed symmetric layered composite shown in Fig. 1, consists of two isotropic incompressible

elastic materials, where the principal axes of strain in each layer are coincident. The Cartesian coordinate

system is chosen such that x1- and x2-axes are also coincident with the principal axes, the x2-direction is
normal to the free surface of the layered composite, wave propagation is in x1-direction and the origin O lies

at the mid plane of the composite. The thickness of the inner layer is 2d, and the thickness of the outer

layers is h. The outer layers and inner layer are homogeneous with material parameters and mass density a,
b, c, q and a
, b
, c
, q
, respectively. In the remainder of the paper, all quantities with an asterisk refer to

variables and parameters of the inner layer.

For anti-symmetric wave propagation in the pre-stressed symmetric layered composite it is sufficient to

consider only the upper half of the composite (06 x2 6 d þ h). For the outer layer, from Eq. (11) the

relation between displacement–stress increment vectors at the boundary of the layered composite and the
interface is written as
yðd þ hÞ ¼ PðhÞyðdÞ: ð12Þ

By considering the displacement and pressure increments for harmonic waves propagating in the x1-
direction in the inner layer and introducing the displacement–stress increment vector y
, the propagator

matrix for the inner layer P
 may be determined. For the inner layer the relation between displacement–

stress increment vectors at the interface and mid-plane may be established as
y
ðdÞ ¼ P
ðdÞy
ð0Þ: ð13Þ

The anti-symmetric mid-plane conditions and the incremental traction free upper surface conditions can be
written as
U 

1 ð0Þ ¼ S


022ð0Þ ¼ 0; S021ðd þ hÞ ¼ S022ðd þ hÞ ¼ 0: ð14Þ
At the interface, stress increments and the displacement increment in the x2-direction are assumed to be

continuous, while the shear stress increment is assumed to be proportional to the displacement increment

jump in the x1-direction. These interfacial conditions yield
o

x2

x12d

h

h

, , ;α β γ ρ

* * * *, , ;α β γ ρ

Fig. 1. Pre-stressed equilibrium configuration of a symmetric layered composite.
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S

021ðdÞ ¼ S021ðdÞ; S


022ðdÞ ¼ S022ðdÞ;

U2ðdÞ ¼ U 

2 ðdÞ; S


021ðdÞ ¼
kxc
h

½U1ðdÞ � U 

1 ðdÞ	;

ð15Þ
where kx is the non-dimensional shear spring parameter. From Eqs. (12), (13) and (15) the relation between

yðd þ hÞ and y
ð0Þ is expressed as
yðd þ hÞ ¼ PðhÞP̂
ðdÞy
ð0Þ; ð16Þ
where P̂ 

ijðdÞ ¼ P 


ijðdÞ þ di1khP 

3jðdÞ=ðkxcÞ and the elements of PðhÞ and P
ðdÞ are given in Appendix A.

Substituting Eq. (14) into Eq. (16) yields a set of four homogeneous linear simultaneous equations for four
unknowns from which the dispersion relation for anti-symmetric waves in an imperfectly bonded composite

is obtained as
X4

i¼1

X4

j¼1

½P3iP 

i2P4jP



j3 � P3iP 


i3P4jP


j2	 þ

kh
kxc

X4

i¼1

½P3iP 

i2P41P



33 þ P4iP 


i3P31P


32 � P3iP 


i3P41P


32 � P4iP 


i2P31P


33	 ¼ 0;

ð17Þ

for kx P 0, where Pij and P 


ij are the elements of PðhÞ and P
ðdÞ respectively. The above equation is similar in
form to the dispersion relation obtained for symmetric waves (Eq. (3.5), LW, 2003)
X4

i¼1

X4

j¼1

½P3iP 

i1P4jP



j4 � P3iP 


i4P4jP


j1	 þ

kh
kxc

X4

i¼1

½P3iP 

i1P41P



34 þ P4iP 


i4P31P


31 � P3iP 


i4P41P


31 � P4iP 


i1P31P


34	 ¼ 0:

ð18Þ

It is seen that the two dispersion relations differ from each other only through the elements P 


ij associated

with the inner layer due to the change in mid-plane conditions.

The elements of PðhÞ and P
ðdÞ are substituted into Eq. (17) and the common factor
q1q2ðq21 � q22Þ

2ðq
21 � q
22 Þ is removed from the denominator. The removal of this common factor leads to

spurious roots in the resulting relation
2q1q2f ðq1Þf ðq2ÞD1 þ q1f ðq2Þ2½C1S2D2 þ C1C2D3 þ S1S2D4 þ S1C2D5	 � q2f ðq1Þ2½S1C2D2

þ S1S2D3 þ C1C2D4 þ C1S2D5	 þ
kh
kx

� �
fq1f ðq2Þ2½C1S2D6 þ S1S2D7 þ ðC1C2 � 1ÞD8	

� q2f ðq1Þ2½S1C2D6 þ ðC1C2 � 1ÞD7 þ S1S2D8	g ¼ 0; ð19Þ
where
D1 ¼ q
1½f 
ðq
2Þ � rf ðq2Þ	½rf ðq1Þ � f 
ðq
2Þ	S

1C



2 þ q
2½f 
ðq
1Þ � rf ðq2Þ	½f 
ðq
1Þ � rf ðq1Þ	C


1S


2 ;

D2 ¼ q
1q


2r½f ðq1Þ � f ðq2Þ	½f 
ðq
1Þ � f 
ðq
2Þ	S


1S


2 ;

D3 ¼ q
1q2½f 
ðq
2Þ � rf ðq1Þ	2S

1C



2 � q
2q2½f 
ðq
1Þ � rf ðq1Þ	2C


1S


2 ;

D4 ¼ q
2q1½f 
ðq
1Þ � rf ðq2Þ	2C

1S



2 � q
1q1½f 
ðq
2Þ � rf ðq2Þ	2S


1C


2 ;

D5 ¼ q1q2r½f ðq1Þ � f ðq2Þ	½f 
ðq
1Þ � f 
ðq
2Þ	C

1C



2 ;

D6 ¼ ½f ðq1Þ � f ðq2Þ	½q
2f 
ðq
1Þ
2C


1S


2 � q
1f


ðq
2Þ
2S


1C


2 	;

D7 ¼ q1rf ðq2Þ2½f 
ðq
2Þ � f 
ðq
1Þ	C

1C



2 ;

D8 ¼ q2rf ðq1Þ2½f 
ðq
1Þ � f 
ðq
2Þ	C

1C



2 ;

ð20Þ
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and f ðqmÞ, Cm, Sm, (m ¼ 1; 2) are defined in Eq. (A.2) and f 
ðq
mÞ, C

m, S



m, (m ¼ 1; 2), r are defined in Eq.

(A.3). Eq. (19) is identical to the dispersion relation for symmetric waves (Eq. (3.6), LW, 2003) but Di,

(i ¼ 1; 2; . . . ; 8) for the present case (Eq. (20)) is obtained by replacing C

m by S


m and S

m by C


m, (m ¼ 1; 2) in
Eq. (3.7) of LW (2003). Rogerson and Sandiford (1997) obtained the dispersion relation in a similar form
for the perfectly bonded case.

Eq. (19) can be written in a more compact form as
q
1S


1C



2 ½f 
ðq
2Þ

2D9 þ f 
ðq
2ÞD10 þ D11	 � q
2C


1S



2 ½f 
ðq
1Þ

2D9 þ f 
ðq
1ÞD10 þ D11	

� ½f 
ðq
1Þ � f 
ðq
2Þ	½q
1q
2S

1S



2D12 þ C


1C


2D13	 þ

kh
rkx

� �
f½f 
ðq
1Þ � f 
ðq
2Þ	C


1C


2D11

þ ½q
1f 
ðq
2Þ
2S


1C


2 � q
2f


ðq
1Þ
2C


1S


2 	D12g ¼ 0; ð21Þ
where
D9 ¼ 2q1q2f ðq1Þf ðq2Þ � q1q2½f ðq1Þ2 þ f ðq2Þ2	C1C2 þ ½q21f ðq2Þ
2 þ q22f ðq1Þ

2	S1S2;
D10 ¼ 2rfq1q2f ðq1Þf ðq2Þ½f ðq1Þ þ f ðq2Þ	ðC1C2 � 1Þ � ½q21f ðq2Þ

3 þ q22f ðq1Þ
3	S1S2g;

D11 ¼ r2f�2q1q2f ðq1Þ2f ðq2Þ2ðC1C2 � 1Þ þ ½q21f ðq2Þ
4 þ q22f ðq1Þ

4	S1S2g;
D12 ¼ r½f ðq1Þ � f ðq2Þ	½q1f ðq2Þ2C1S2 � q2f ðq1Þ2S1C2	;
D13 ¼ rq1q2½f ðq1Þ � f ðq2Þ	½q1f ðq2Þ2S1C2 � q2f ðq1Þ2C1S2	:

ð22Þ
The corresponding equation for symmetric waves (Eq. (3.8), LW, 2003) can be obtained from Eq. (21) by

replacing C

m by S


m and S

m by C


m, (m ¼ 1; 2), and Eq. (3.9) of LW (2003) is the same as Eq. (22). It is noted

that other than the term r ¼ c=c
 all terms in Eq. (22) are related only to the outer layer.

When kx ! 1 the dispersion relation for a perfectly bonded interface is obtained from Eq. (19) as
2q1q2f ðq1Þf ðq2ÞD1 þ q1f ðq2Þ2½C1S2D2 þ C1C2D3 þ S1S2D4 þ S1C2D5	
� q2f ðq1Þ2½S1C2D2 þ S1S2D3 þ C1C2D4 þ C1S2D5	 ¼ 0; ð23Þ
and from Eq. (21) as
q
1S


1C



2 ½f 
ðq
2Þ

2D9 þ f 
ðq
2ÞD10 þ D11	 � q
2C


1S



2 ½f 
ðq
1Þ

2D9 þ f 
ðq
1ÞD10 þ D11	
� ½f 
ðq
1Þ � f 
ðq
2Þ	½q
1q
2S


1S


2D12 þ C


1C


2D13	 ¼ 0: ð24Þ
The expression given in Eq. (3.7) of Rogerson and Sandiford (1997) for the perfectly bonded case contains

some minor errors.

When kx ¼ 0 the dispersion relation for the fully slipping interface is obtained from Eq. (19) as
q1f ðq2Þ2½C1S2D6 þ S1S2D7 þ ðC1C2 � 1ÞD8	 � q2f ðq1Þ2½S1C2D6 þ ðC1C2 � 1ÞD7 þ S1S2D8	 ¼ 0; ð25Þ
and from Eq. (21) as
½f 
ðq
1Þ � f 
ðq
2Þ	C

1C



2D11 þ ½q
1f 
ðq
2Þ

2S

1C



2 � q
2f


ðq
1Þ
2C


1S


2 	D12 ¼ 0: ð26Þ
It is noted that Eqs. (23) or (24) and (25) or (26) can also be obtained directly by separately considering the

perfectly bonded interface problem (Rogerson and Sandiford, 1997) and the slipping interface problem.



S. Leungvichcharoen et al. / International Journal of Solids and Structures 41 (2004) 6873–6894 6879
4. Analysis of dispersion relation

The similarity of the dispersion relations for anti-symmetric and symmetric waves shown in Section 3,

results in similar behavior for these two kinds of waves, which will be discussed in this section. The roots q21,
q22 of Eq. (4) can be written as
q21; q
2
2 ¼

1

2
2�b

�
� n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�b � nÞ2 � 4ð�a � nÞ

q �
; ð27Þ
where n ¼ qv2=c is the non-dimensional square of the phase speed and �a ¼ a=c, �b ¼ b=c. Similar expres-

sions for q
21 and q
22 , for the inner layer are
q
21 ; q

2
2 ¼ 1

2
2�b


�
� n
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�b
 � n
Þ2 � 4ð�a
 � n
Þ

q �
; ð28Þ
where �a
 ¼ a
=c
, �b
 ¼ b
=c
, n
 ¼ q
v2=c
 ¼ an and a ¼ rq
=q. For brevity, in what follows the non-

dimensional square of the phase speed n is referred to as squared phase speed.

In the present paper, the common factor q1q2ðq21 � q22Þ
2ðq
21 � q
22 Þ taken out from the denominator of Eq.

(17) leads to spurious roots of Eq. (21) given by
n ¼ nS1 ¼ �a; when q1 ¼ 0 or q2 ¼ 0;

n ¼ nS2; nS3 ¼ 2ð�b � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a � 2�b þ 1

p
Þ; when q21 ¼ q22;

n
 ¼ n

S2; n



S3 ¼ 2ð�b
 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a
 � 2�b
 þ 1

p
Þ; when q
21 ¼ q
22 :

ð29Þ
This is in contrast to the case of symmetric waves, which has a common factor q1q2q
1q


2ðq21 � q22Þ

2ðq
21 � q
22 Þ
with an additional spurious root at n
 ¼ n


S1 ¼ �a
 (when q
1q


2 ¼ 0). Here nS1 and nS2 (n



S1 and n


S2) are upper

bounds on the squared phase speed of pure surface waves propagating in a half space of the outer layer

(inner layer) material (Ogden and Sotiropoulos, 1995).

4.1. Low wavenumber limit kh ! 0

When kh ! 0 the thickness of the layers are very small compared to the wavelength. By considering

small argument expansions of the hyperbolic functions, the squared phase speeds for the imperfect interface

and perfectly bonded cases are obtained from Eqs. (21) and (24) as
nðAÞ
0 ¼ D½�a
 � ð1� rrÞ2	 þ r½�a � ð1� rÞ2	

aDþ r
; ð30aÞ
and for the fully slipping case from Eq. (26) as
nðAÞ
01 ¼ 2ð�b þ 1� rÞ; nðAÞ

02 ¼ nðAÞ
0 : ð30bÞ
The finite squared phase speed nðAÞ
0 agrees with Eq. (4.2) of Rogerson and Sandiford (1997) while nðAÞ

01

corresponds to the fundamental mode of symmetric waves of an incompressible elastic layer with free

surfaces (see Eq. (4.5), Rogerson, 1997). The corresponding results for symmetric waves are (LW, 2003),
nðSÞ
0 ¼ 2½Dð�b
 þ 1� rrÞ þ rð�b þ 1� rÞ	

aDþ r
;

nðSÞ
01 ¼ 2ð�b þ 1� rÞ; nðSÞ

02 ¼ 2ð�b
 þ 1� rrÞ=a:
ð31Þ
Here it is seen that nðAÞ
01 ¼ nðSÞ

01 . This has been verified by examining the displacement profiles of the com-
posite. At this squared phase speed, for anti-symmetric waves u1 ¼ constant and u2 ! 0 in the upper outer

layer (and the lower outer layer moves in the opposite direction) while u1; u2 ! 0 for the inner layer; for



6880 S. Leungvichcharoen et al. / International Journal of Solids and Structures 41 (2004) 6873–6894
symmetric wave u1 ¼ constant and u2 ! 0 in the upper outer layer (and the lower outer layer moves in the

same direction) while u1; u2 ! 0 for the inner layer. In addition for anti-symmetric waves nðAÞ
02 ¼ nðAÞ

0 and

now u1 ! 0 and u2 ¼ constant for all layers.

Eqs. (30) and (31) are the finite squared phase speeds of the lowest branches of the dispersion curves,
which have frequencies that tend to zero as kh ! 0. The frequencies of higher modes which have infinite

squared phase speeds (n ! 1) when kh ! 0 are considered next. When n ! 1 expressions for q21, q
2
2, q


2
1

and q
22 can be obtained from Eqs. (27) and (28) as
q21 ¼ �n þ 2�b � 1� 2�b � �a � 1

n
þ Oðn�2Þ; q22 ¼ 1þ 2�b � �a � 1

n
þ Oðn�2Þ;

q
21 ¼ �an þ 2�b
 � 1� 2�b
 � �a
 � 1

an
þ Oðn�2Þ; q
22 ¼ 1þ 2�b
 � �a
 � 1

an
þ Oðn�2Þ:

ð32Þ
It is easily seen that q1, q
1 are imaginary while q2, q
2 are real. By substituting Eq. (32) into Eq. (21),
introducing the non-dimensional frequency parameter X ¼ kh

ffiffiffi
n

p
and considering small argument expan-

sions of the hyperbolic functions, the expression to determine the cut-off frequencies (XðAÞ
C > 0) is obtained

as
 ffiffiffi
a

p
XðAÞ

C sinðXðAÞ
C Þ cosð

ffiffiffi
a

p
DXðAÞ

C Þ � kx½
ffiffiffi
a

p
cosðXðAÞ

C Þ cosð
ffiffiffi
a

p
DXðAÞ

C Þ � r sinðXðAÞ
C Þ sinð

ffiffiffi
a

p
DXðAÞ

C Þ	 ¼ 0:

ð33Þ

Similar to the case of symmetric waves (LW, 2003) the cut-off frequencies obtained from Eq. (33) depend

only on the non-dimensional parameters a, D, r and kx and the equations for cut-off frequencies of the

perfectly bonded and fully slipping cases may also be deduced from this equation. For the fully slipping
interface XðAÞ

C ¼ np, ðn� 1
2
Þp=ð ffiffiffi

a
p

DÞ, ðn ¼ 1; 2; . . .Þ where np corresponds to the cut-off frequencies for

symmetric waves propagating in the outer layer with free surfaces, and ðn� 1
2
Þp=ð ffiffiffi

a
p

DÞ corresponds to the

cut-off frequencies for anti-symmetric waves propagating in the inner layer with free surfaces (see Eqs.

(3.8c) and (3.13c), Kaplunov et al., 2002).

4.2. High wavenumber limit kh ! 1

When kh ! 1 the thickness of the layers are very large compared to wavelength and the propagation
behavior is similar to waves in a semi-infinite medium and two joined semi-infinite media. Hence for both

anti-symmetric and symmetric wave propagation the same high wavenumber limits are expected. The

behavior of the dispersion relation in this region depends on the roots q1, q2, q
1 and q
2 which may either

real, pure imaginary or complex conjugates which in turn depends on squared phase speed n and the

parameters �a, �b, �a
, �b
 (see Appendix B).

4.2.1. Roots q1, q2, q
1 and q
2 are real or complex conjugates with non-zero real part

When kh ! 1, hyperbolic functions in the dispersion relation Cm, Sm, C

m and S


m ! 1, (m ¼ 1; 2). For
anti-symmetric waves in the case of an imperfectly bonded interface, dividing Eq. (21) by C1C2C


1C


2 , taking

the limit kh ! 1 and removing the common factor ðq1 � q2Þ2ðq
1 � q
2Þ, yields
RrðnÞISðnÞ ¼ 0; ð34Þ
where RrðnÞ ¼ 0 and ISðnÞ ¼ 0 are the secular equations for the squared phase speeds of the Rayleigh

surface wave of the outer layer (Dowaikh and Ogden, 1990) and the Stoneley interfacial wave for fully

slipping half spaces given by
RrðnÞ ¼ g3 þ g2 þ ð2� 2r þ 2�b � �aÞg � ð1� rÞ2; ð35Þ
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ISðnÞ ¼ ðq1 þ q2ÞR

rðnÞ þ rðq
1 þ q
2ÞRrðnÞ; ð36Þ
in which
R

rðnÞ ¼ g
3 þ g
2 þ ð2� 2rr þ 2�b
 � �a
Þg
 � ð1� rrÞ2; ð37Þ
where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
�a � n

p
and g
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a
 � an

p
.

Similarly analyzing Eqs. (24) and (26) yields
RrðnÞIPðnÞ ¼ 0; ð38Þ
for the perfectly bonded interface and Eq. (34) for the fully slipping interface, where IPðnÞ ¼ 0, is the secular

equation for the squared phase speed of Stoneley interfacial waves for perfectly bonded half spaces

(Dowaikh and Ogden, 1991) given by
IPðnÞ ¼ r2R0ðnÞ þ R

0ðnÞ þ 2rð1� q1q2Þð1� q
1q



2Þ þ rðq1 þ q2Þðq
1 þ q
2Þðq1q2 þ q
1q



2Þ ¼ 0: ð39Þ
In the above equation, R0ðnÞ and R

0ðnÞ are the Rayleigh wave equations (see Eqs. (35) and (37)) with zero

Cauchy stress (r ¼ 0).

Eqs. (34) and (38) were also obtained for the symmetric wave case in LW (2003). The roots of Eqs. (35),

(36) and (39) (presented in different forms in Eqs. (4.10) and (4.12) of LW (2003)) are denoted by nR, nIS and
nIP, respectively. In addition, Eq. (36) when there is no pre-stress, agrees with the secular equation of slip-

waves propagating in two different linear isotropic half-spaces in sliding contact (see Eq. (23), Barnett et al.,

1988).
4.2.2. At least one of the roots q1, q2, q
1 and q
2 is pure imaginary

When kh ! 1 the hyperbolic functions Cm, Sm, C

m and S


m, (m ¼ 1; 2) with pure imaginary arguments are

finite and the dispersion relation Eq. (21) yields for all values of kx squared phase speeds n that will tend to

the limiting squared phase speed of the bi-material composite nCL (Rogerson and Sandiford, 2000), given by
nCL ¼ minðnL; n


L=aÞ; ð40Þ
where
nL ¼ nS1 ¼ �a; �a6 2�b
nS2 ¼ 2ð�b � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a � 2�b þ 1

p
Þ; �a > 2�b

(
ðfor outer layersÞ; ð41aÞ
n

L ¼ n


S1 ¼ �a
; �a

6 2�b


n

S2 ¼ 2ð�b
 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a
 � 2�b
 þ 1

p
Þ; �a
 > 2�b


(
ðfor inner layerÞ; ð41bÞ
where nL and n

L are limiting squared phase speeds of the outer layers and the inner layer, respectively.

Hence, there are four possible cases of limiting squared phase speeds of the composite, Case 1: nCL ¼ nS1;

Case 2: nCL ¼ nS2; Case 3: nCL ¼ n

S1=a and Case 4: nCL ¼ n


S2=a.
Comparing Eqs. (34)–(41) with Section 4.2 of LW (2003) it is seen that the limiting squared phase speeds

when kh ! 1 for anti-symmetric and symmetric waves are the same. In the case of anti-symmetric waves,

the squared phase speed of the fundamental mode and the next higher modes are denoted nð1Þ
A and nðnÞ

A

(n ¼ 2; 3; . . .), and for symmetric waves, the squared phase speed of the fundamental mode and the next
higher modes are denoted as nð1Þ

S and nðnÞ
S (n ¼ 2; 3; . . .), respectively. Hence, the limiting squared phase

speeds when kh ! 1 for the case of a perfectly bonded interface will be given by
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nð1Þ
A ; nð1Þ

S ! minðnR; nIPÞ; nð2Þ
A ; nð2Þ

S ! maxðnR; nIPÞ; nðnÞ
A ; nðnÞ

S ! nCL;

n ¼ 3; 4; . . . ; when both nR; nIP < nCL;

nð1Þ
A ; nð1Þ

S ! nR; nðnÞ
A ; nðnÞ

S ! nCL; n ¼ 2; 3; . . . ; when only nR < nCL;

nð1Þ
A ; nð1Þ

S ! nIP; nðnÞ
A ; nðnÞ

S ! nCL; n ¼ 2; 3; . . . ; when only nIP < nCL;

nðnÞ
A ; nðnÞ

S ! nCL; n ¼ 1; 2; . . . ; when nR P nCL and nIP does not exist or when both

nR; nIP do not exist:

ð42Þ
For the fully slipping and the imperfect interface cases, the squared phase speed nIP above is replaced by nIS.
5. Stability considerations

In this section, stability issues for both anti-symmetric and symmetric waves are discussed, as the latter

case was not considered in LW (2003). For a particular mode when n < 0, the phase speed v is pure

imaginary and instead of harmonic waves travelling in the x1-direction, the displacement and pressure

increments given by Eq. (3) will correspond to standing waves with amplitudes that grow exponentially with
time, i.e., an unstable state. Harmonic waves travelling in the x1-direction will be stable for a particular

mode when n > 0, while n ¼ 0 corresponds to the neutral state where static modes of incremental defor-

mation occur. For a given pre-stressed state the layered composite can be considered to be stable for wave

propagation in x1-direction, if the squared phase speed n of all branches are positive for all kh.
The strong ellipticity conditions (Eq. (6)) for the outer and inner layer materials yield the inequalities,
�a > 0; �b > �
ffiffiffi
�a

p
; �a
 > 0; �b
 > �

ffiffiffiffiffi
�a


p
: ð43Þ
Considering the limiting squared phase speeds when kh ! 1 given by Eqs. (40)–(41) together with Eq. (43),

yields that nCL > 0. As noted earlier in Section 4.2.2 since the branches of the dispersion curves (which may

or may not include the lowest modes) tend to nCL when kh ! 1, if the inequalities given by Eq. (43) is

violated, unstable modes will exist. However, since the squared phase speed of the lowest modes could be

less than nCL, satisfying the inequality given by Eq. (43) does not guarantee that all modes will be stable, i.e.,

the strong ellipticity condition is necessary but insufficient for stable wave propagation.

The bifurcation equation is obtained from the dispersion relation by setting the squared phase speed n to
zero and yields the neutral curves that separate the stable and unstable regions associated with the fun-

damental mode or the next lowest mode. Substituting n ¼ 0 into Eq. (17) for anti-symmetric waves and Eq.

(18) for symmetric waves, two quartic equations
UðAÞ
4 r4 þ UðAÞ

3 r3 þ UðAÞ
2 r2 þ UðAÞ

1 r þ UðAÞ
0 ¼ 0; ð44aÞ
UðSÞ
4 r4 þ UðSÞ

3 r3 þ UðSÞ
2 r2 þ UðSÞ

1 r þ UðSÞ
0 ¼ 0; ð44bÞ
are obtained, where UðAÞ
n and UðSÞ

n are functions of �a, �b, �a
, �b
, kh, kx, r, a and D. For the perfectly bonded

case, the bifurcation equations given by Eq. (44) reduce to quadratic equations (see Eq. (6.1) of Rogerson

and Sandiford (1997) for anti-symmetric waves and Eq. (5.1) of Rogerson and Sandiford (1996) for

symmetric waves), while for the fully slipping interface case, Eqs. (44a) and (44b) remain as quartic
equations.
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5.1. Stable range of r as kh ! 0

The solutions of Eq. (44) as kh ! 0 can be computed directly from Eqs. (44) but are readily obtained

from Eqs. (30) and (31) with the squared phase speed set to zero.
For anti-symmetric wave propagation in an imperfectly bonded or perfectly bonded layered composite,

from Eq. (30a) the stable range for nðAÞ
0 > 0 can be obtained as
r�ðAÞ
0 < r < rþðAÞ

0 ; ð45Þ
where
rþðAÞ
0 ; r�ðAÞ

0 ¼ 1þ D
1þ rD

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�a þ D�a


rð1þ rDÞ �
D
r

1� r
1þ rD

� �2
s

: ð46Þ
For the fully slipping interface case from Eq. (30b) the stable range for nðAÞ
01 > 0 and nðAÞ

02 > 0 is
r�ðAÞ
02 < r < minðrðAÞ

01 ; rþðAÞ
02 Þ; ð47Þ
where
rðAÞ
01 ¼ �b þ 1; rþðAÞ

02 ¼ rþðAÞ
0 ; r�ðAÞ

02 ¼ r�ðAÞ
0 : ð48Þ
In addition, if r > maxðrðAÞ
01 ; rþðAÞ

02 Þ then both nðAÞ
01 and nðAÞ

02 are negative.

It is seen from Eq. (46) that if there is no real value of r�ðAÞ
0 i.e., when
r�a þ D�a


rð1þ rDÞ �
D
r

1� r
1þ rD

� �2

< 0; ð49Þ
then from Eq. (30a) it can be shown that
nðAÞ
0 <

�r½1� r þ Dð1� rrÞ	2

ð1þ rDÞðaDþ rÞ 6 0; ð50Þ
and hence for all kx one of the lowest modes will be unstable.

For symmetric waves, in an imperfectly bonded or perfectly bonded layered composite, from Eq. (31a)

the stable range for nðSÞ
0 > 0 is
r < rðSÞ
0 ; ð51Þ
where
rðSÞ
0 ¼ Dð�b
 þ 1Þ þ rð�b þ 1Þ

rð1þ DÞ : ð52Þ
For the fully slipping interface case, Eq. (31b) yields the stable range of r for nðSÞ
01 > 0 and nðSÞ

02 > 0 is
r < minðrðSÞ
01 ; r

ðSÞ
02 Þ; ð53Þ
where
rðSÞ
01 ¼ rðAÞ

01 ; rðSÞ
02 ¼ ð�b
 þ 1Þ=r: ð54Þ
Similar to the anti-symmetric wave case i.e., if r > maxðrðSÞ
01 ; r

ðSÞ
0 Þ then nðSÞ

01 < 0 and nðSÞ
02 < 0.
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5.2. Stable range of r as kh ! 1

The limiting squared phase speeds for both symmetric and anti-symmetric waves as kh ! 1 are the

same, i.e., nR, nIP or nCL for perfectly bonded interface case and nR, nIS or nCL for imperfectly bonded and
fully slipping interface cases (see Section 4.2). However, for composites which already satisfy the strong

ellipticity conditions, nCL is always positive and the secular equation used to obtain nIP does not depend on

r, therefore the stable ranges of r as kh ! 1 may be computed by just considering Eq. (35) for perfectly

bonded case, and considering Eqs. (35) and (36) for imperfectly bonded and fully slipping interface cases

only.

For the perfectly bonded interface case, from Eq. (35) the stable range for nR > 0 is
r�
R < r < rþ

R; ð55Þ

where
rþ
R; r

�
R ¼ 1�

ffiffiffi
�a

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�a þ 2�b

ffiffiffi
�a

pq
: ð56Þ
This is the required range of values of r for the existence of a unique surface wave in an incompressible

elastic half-space (see Eq. (6.13) of Dowaikh and Ogden (1990)).

While for the fully slipping and the imperfect interfaces cases, the stable range for non-negative values of

nR and nIS should be
maxðr�
R; r

�
ISÞ < r < minðrþ

R; r
þ
ISÞ; ð57Þ
where
rþ
IS; r

�
IS ¼

fð1�
ffiffiffiffiffi
�a


p
Þ þ f
ð1�

ffiffiffi
�a

p
Þ

rf þ f

� fð1�

ffiffiffiffiffi
�a


p
Þ þ f
ð1�

ffiffiffi
�a

p
Þ

rf þ f


" #2
8<
: � fr
þ

R r
�
R þ rf
rþ

Rr�
R

rðrf þ f
Þ

� �9=
;

1
2

;

ð58Þ

and
f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b þ

ffiffiffi
�a

pq
; f
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b
 þ

ffiffiffiffiffi
�a


pq
; r
þ

R ; r
�
R ¼ 1�

ffiffiffiffiffi
�a


p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�a
 þ 2�b
 ffiffiffiffiffi

�a

pq

:

It can be shown that when there is no real value of r�
IS that nIS < 0 and one of the lowest modes will be

unstable.
6. Numerical results

The examples discussed in this section correspond to the four examples considered for symmetric waves

in LW (2003), where incompressible elastic materials with Mooney–Rivlin and Varga strain energy func-
tions were used.

The strain energy function W ðMRÞ of Mooney–Rivlin material (Ogden and Sotiropoulos, 1997) is
W ðMRÞ ¼ 1

2
l1ðk2

1 þ k2
2 þ k2

3 � 3Þ þ 1

2
l2ðk�2

1 þ k�2
2 þ k�2

3 � 3Þ; ð59Þ
where l1 and l2 are material constants. Using Eq. (5) the parameters �a and �b of this material are expressed

as
�a ¼ k2
1=k

2
2; 2�b ¼ �a þ 1: ð60Þ
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The strain energy function W ðVÞ of Varga material (Ogden and Sotiropoulos, 1997) is
Table

Limits

Exa

Exa

Exa

Exa

nðAÞ
02 ¼
a nL.
b n


L=
W ðVÞ ¼ 2lðk1 þ k2 þ k3 � 3Þ; ð61Þ
where l is a material constant and from Eq. (5) the parameters �a and �b of this material are given by
�a ¼ k2
1=k

2
2;

�b ¼ k1=k2: ð62Þ
The parameters �a
 and �b
 for the inner layer are similarly obtained.

The dispersion curves can be obtained either by solving Eq. (21) and disregarding non-dispersive spu-

rious roots (see Eq. (29)), or directly from Eq. (17), where when n is equal to any spurious root, l’Hôpital’s

rule is employed. Here the latter method is used to obtain the dispersion curves. In the case of dispersion

curves the results for symmetric waves are only plotted for comparison purposes and the discussion is

mostly regarding anti-symmetric waves.

The neutral curves are plotted from Eqs. (44). But when the numerator and denominator of each

coefficient UðA;SÞ
i ði ¼ 0; . . . ; 4Þ vanish (which corresponds to a spurious root n ¼ 0 in Eq. (29)) l’Hôpital’s

rule is used to obtain the neutral curves. For example, it can be shown from Eq. (29) that either nS2 ¼ 0 or

nS3 ¼ 0 when �a ¼ �b2, which occurs for Varga material and which also occurs for the equi-biaxial defor-

mation state for any material where �a ¼ �b ¼ 1. As mentioned in Section 5, Eqs. (44) reduces to quadratic

equations for the case of a perfectly bonded interface, hence at most two neutral curves may exist; while for

the fully slipping and imperfect interface cases at most four neutral curves may exist.

In Examples 1–4 for a given state of pre-stress the parameters �a, �b, �a
, �b
 are computed while the non-

dimensional parameters r, a, r, kx and D are prescribed. For each example the shear spring parameter is

prescribed as kx ¼ 0; 1 and 1, and the squared phase speeds of the first sixteen modes nðnÞ
A and nðnÞ

S ,
(n ¼ 1; 2; . . . ; 16) are plotted in semi-log scale to clearly show the low wavenumber limits. In addition to

examine the cut-off frequencies the frequencies of the first sixteen modes XðnÞ
A and XðnÞ

S , (n ¼ 1; 2; . . . ; 16) are
also plotted. The limiting squared phase speeds calculated from Eqs. (30), (31), (35)–(37), (39) and (41)

are given in Table 1. Stability issues are explored by plotting neutral curves where the limiting values for

these neutral curves as kh ! 0 and kh ! 1 are computed from Eqs. (46), (48), (52), (54), (56) and (58) and

given in Table 2.

Example 1. Both inner and outer layers are equi-biaxially deformed in (x1x2)-plane i.e., k1 ¼ k2 ¼ k and
k

1 ¼ k


2 ¼ k
 and from Section 2 for any strain energy function �a ¼ �b ¼ �a
 ¼ �b
 ¼ 1. The other prescribed

parameters are r ¼ 0:25, a ¼ 1:25, r ¼ �1:0 and D ¼ 1. This example corresponds to Case 3 in Section

4.2.2 with a limiting squared phase speed of the composite nCL ¼ n

S1=a ¼ 0:8.

The dispersion curves are shown in Fig. 2 and it is seen from Fig. 2(a)–(c) that the squared phase speed of

the fundamental mode of anti-symmetric waves nð1Þ
A is not always positive because nðAÞ

0 ¼ �0:875 in Table 1,
1

of non-dimensional squared phase speed n

kh ! 0 kh ! 1
nðAÞ
0 nðAÞ

01 nðSÞ
0 nðSÞ

02 nS1 nS2 n

S1=a n


S2=a nCL nR nIP nIS

mple 1 )0.875 6.0 4.0 3.6 1a – 0.8b – 0.8 0.568 0.782 0.663

mple 2 0.743 5.0 1.892 1.406 1a – – 1.25b 1.0 0.771 – –

mple 3 1.255 5.441 1.144 0.606 2.411a – – 0.813b 0.813 2.354 – 0.803

mple 4 1.674 7.7 7.85 8.0 – 4.4a – 5.0b 4.4 3.937 – 4.157

nðAÞ
0 and nðSÞ

01 ¼ nðAÞ
01 .

a.



Table 2

Limits of non-dimensional Cauchy stress r for neutral curves

kh ! 0 kh ! 1
r�ðAÞ
0 rþðAÞ

0 rðAÞ
01 rðSÞ

0 rðSÞ
02 r�

R rþ
R r�

IS rþ
IS

Example 1 0 3.2 2 5 8 )2 2 )4 4

Example 2 )1.236 3.236 2 3 4 )2 2 )4.577 3.113

Example 3 )1.314 2.456 2.721 2.573 2.425 )3.766 2.641 )4.874 2.500

Example 4 )1.176 3.176 3.1 3.175 3.25 )5.3 3.1 )5.523 3.176

r�ðAÞ
02 ¼ r�ðAÞ

0 and rðSÞ
01 ¼ rðAÞ

01 .

Fig. 2. Dispersion curves of the fundamental mode and next fifteen modes of Example 1. (a)–(c) Non-dimensional squared phase speed

n, (d)–(f) non-dimensional frequency X; solid lines for anti-symmetric waves and dashed lines for symmetric waves.
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indicating that the fundamental mode is unstable for a certain range of kh. When kh ! 0 for kx > 0,
nðnÞ
A ! 1 ðn ¼ 2; 3; . . .Þ, while for the fully slipping case nð2Þ

A ! nðAÞ
01 and nðnÞ

A ! 1 ðn ¼ 3; 4; . . .Þ. It is also
seen from Fig. 2(c) that in the case of the fully slipping interface the squared phase speed of one mode of the

anti-symmetric waves and one mode of the symmetric waves tend to the same limit i.e., nðAÞ
01 ¼ nðSÞ

01 . When

kh ! 1 since, nR < nIP < nCL and nR < nIS < nCL, for the perfectly bonded case nð1Þ
A ! nR, nð2Þ

A ! nIP and

nðnÞ
A ! nCL ðn ¼ 3; 4; . . .Þ and for the imperfectly bonded and fully slipping interfaces cases nð1Þ

A ! nR,

nð2Þ
A ! nIS and nðnÞ

A ! nCL ðn ¼ 3; 4; . . .Þ. The frequency plots given in Fig. 2(d)–(f) show that when kh ! 0

for all values of kx the frequency of the fundamental mode Xð1Þ
A has no real value, which corresponds to the

negative limiting squared phase speed nðAÞ
0 ¼ �0:875. The frequencies of the other modes tend to the cut-off

frequencies calculated from Eq. (33), except when kx ¼ 0 (Fig. 2(f)), the frequency of the second mode

Xð2Þ
A ! 0, which corresponds to the other finite limiting squared phase speed nðAÞ

01 ¼ 6:0. From Fig. 2(f) it is

seen that half of all of the modes of anti-symmetric waves have the same cut-off frequencies as symmetric

waves since XðAÞ
C ¼ np; ðn� 1

2
Þp=ð ffiffiffi

a
p

DÞ and XðSÞ
C ¼ np; np=ð ffiffiffi

a
p

DÞ, ðn ¼ 1; 2; . . .Þ.



Fig. 3. Neutral curves corresponding to Example 1. (a)–(c) Anti-symmetric waves, (d)–(f) symmetric waves; shaded area is the region

where all modes are stable.
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The neutral curves for anti-symmetric and symmetric waves are shown in Fig. 3(a)–(c) and (d)–(f),
respectively. Region (I) is the stable region (shaded area) where all modes have positive squared phase

speeds. In region (II) only the fundamental mode has a squared phase speed which is negative, while both

the fundamental mode and the next lowest mode have negative squared phase speeds in region (III). The

limiting values of r are given in Table 2. When kh ! 0, in the case of anti-symmetric waves, the finite stable

range for perfect and imperfect interfaces is r�ðAÞ
0 < r < rþðAÞ

0 and for a fully slipping interface is

r�ðAÞ
02 ð¼ r�ðAÞ

0 Þ < r < rðAÞ
01 ; while for symmetric waves, the stable range for perfect and imperfect interfaces

is r < rðSÞ
0 and for a fully slipping interface is r < rðSÞ

01 . When kh ! 1, both kinds of waves have the same

stable range, since r�
IS < r�

R and rþ
R < rþ

IS, r
�
R < r < rþ

R for all kx. For kx ¼ 0, 1 and 1 the numerical results
indicate that if 0 < r < 2 anti-symmetric wave propagation is stable, while symmetric wave propagation

will be stable if �1:738 < r < 2. In Example 1, the non-dimensional Cauchy stress r ¼ �1:0 and when

kh ! 0, nðSÞ
0 is finite while nðAÞ

0 does not exist. This behavior will also be reflected in the neutral curves (see

Fig. 3) where when r ¼ �1:0 for anti-symmetric waves, region (I) does not exist for 0 < kh < kh0 where kh0
depends on kx and 0:48 < kh0 < 1:14 while for symmetric waves, region (I) exists for all kh.

Example 2. The outer layers are equi-biaxially deformed in (x1x2)-plane i.e., �a ¼ �b ¼ 1 and the inner layer is

Varga material in a state of plane strain i.e., k

3 ¼ 1 and k


1 ¼ k
�1
2 ¼ k
 which yields �a
 ¼ k
4 and �b
 ¼ k
2.

Here k
 is prescribed as k
 ¼
ffiffiffi
3

p
which yields �a
 ¼ 9 and �b
 ¼ 3 and the other prescribed parameters are

r ¼ 1, a ¼ 6:4, r ¼ �0:5 and D ¼ 1. This example corresponds to Case 1 in Section 4.2.2 with a limiting

squared phase speed nCL ¼ nS1 ¼ 1:0.
The dispersion curves are shown in Fig. 4. From Fig. 4(a)–(c) it is seen that when kh ! 0, for

kx > 0; nð1Þ
A ! nðAÞ

0 and nðnÞ
A ! 1 ðn ¼ 2; 3; . . .Þ, while for the fully slipping case nð1Þ

A ! nðAÞ
02 , nð2Þ

A ! nðAÞ
01 and

nðnÞ
A ! 1 ðn ¼ 3; 4; . . .Þ. When kh ! 1, since there are no real values of nIP and nIS, and nR < nCL (see



Fig. 4. Dispersion curves of the fundamental mode and next fifteen modes of Example 2. (a)–(c) Non-dimensional squared phase speed

n, (d)–(f) non-dimensional frequency X; solid lines for anti-symmetric waves and dashed lines for symmetric waves.
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Table 1); nð1Þ
A ! nR and nðnÞ

A ! nCL ðn ¼ 2; 3; . . .Þ for all values of kx. The frequency plots in Fig. 4(d)–(f)

show that when kh ! 0 the frequencies of all modes tend to the cut-off frequencies calculated from Eq. (33),
except in Fig. 4(d) and (e) for kx > 0 where Xð1Þ

A ! 0 corresponding to the limiting squared phase speed

nðAÞ
0 ¼ 0:743; and in Fig. 4(f) for kx ¼ 0 where Xð1Þ

A ! 0 and Xð2Þ
A ! 0 corresponding to the two limiting

squared phase speeds nðAÞ
02 ¼ 0:743 and nðAÞ

01 ¼ 5:0, respectively.
Fig. 5, shows the neutral curves where region (I) in Fig. 5(a)–(c) and Fig. 5(d)–(f) is the stable region for

anti-symmetric waves and symmetric waves, respectively. For kx ¼ 0, 1 and1 the numerical results indicate

that if �1:236 < r < 2 anti-symmetric wave propagation is stable while if �1:796 < r < 2 symmetric wave

propagation will be stable. In this example since the non-dimensional Cauchy stress r ¼ �0:5 both types of

waves are stable.

Example 3. The primary deformations of both inner and outer layers are plane strain deformations in

(x1x2)-plane i.e., k3 ¼ 1, k1 ¼ k�1
2 ¼ k, k


3 ¼ 1 and k

1 ¼ k
�1

2 ¼ k
. The outer and inner layers are Mooney–

Rivlin and Varga materials, respectively, which yield �a ¼ k4, 2�b ¼ k4 þ 1, �a
 ¼ k
4 and �b
 ¼ k
2. Here k and

k
 are prescribed as k ¼ 1:25 and k
 ¼ 2:25 which will give �a ¼ 2:441, �b ¼ 1:721; �a
 ¼ 25:629 and �b
 ¼ 5:063
and the other prescribed parameters are r ¼ 2:5, a ¼ 20, r ¼ 0 and D ¼ 1. This example corresponds to

Case 4 in Section 4.2.2 with a limiting squared phase speed of the composite nCL ¼ n

S2=a ¼ 0:813.

From Fig. 6(a)–(c) it is seen that when kh ! 0, the behavior is similar to Example 2. The limiting values
in Table 1 show that there is no real value of nIP and nIS < nCL < nR; therefore, when kh ! 1, for the

perfectly bonded case nðnÞ
A ! nCL ðn ¼ 1; 2; . . .Þ, while for the imperfectly bonded and the fully slipping

interface cases nð1Þ
A ! nIS and nðnÞ

A ! nCL ðn ¼ 2; 3; . . .Þ. However, since nIS ¼ 0:803 and nCL ¼ 0:813 are very

close together, separation of the limits of fundamental mode and the next higher modes are not clearly seen
in Fig. 6(b) and (c). The frequency plots in Fig. 6(d)–(f) show that the behavior is similar to Example 2

when kh ! 0 and the frequencies of all modes tend to the cut-off frequencies calculated from Eq. (33),

except the modes which correspond to the finite limiting phase speeds as kh ! 0.



Fig. 5. Neutral curves corresponding to Example 2. (a)–(c) Anti-symmetric waves, (d)–(f) symmetric waves; shaded area is the region

where all modes are stable.

Fig. 6. Dispersion curves of the fundamental mode and next fifteen modes of Example 3. (a)–(c) Non-dimensional squared phase speed

n, (d)–(f) non-dimensional frequency X; solid lines for anti-symmetric waves and dashed lines for symmetric waves.
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The neutral curves and stable regions are shown in Fig. 7 and the limiting values of r are shown in Table
2. In this example, since rþðAÞ

0 < rðAÞ
01 , in the case of anti-symmetric waves, the finite stable range when



Fig. 7. Neutral curves corresponding to Example 3. (a)–(c) Anti-symmetric waves, (d)–(f) symmetric waves; shaded area is the region

where all modes are stable.
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kh ! 0 for all values of kx is r�ðAÞ
0 < r < rþðAÞ

0 ; while for symmetric waves, the stable range for perfect and

imperfect interface conditions is r < rðSÞ
0 and for the fully slipping interface is r < rðSÞ

02 . When kh ! 1, both

kind of waves have the same stable range. Since r�
IS < r�

R and rþ
IS < rþ

R, the stable range is r�
R < r < rþ

R for

perfectly bonded case, and r�
R < r < rþ

IS for imperfectly bonded and fully slipping interface cases. For

kx ¼ 0, 1 and 1 the numerical results indicate that if �1:314 < r < 2:456 anti-symmetric wave propagation

is stable, while if �2:705 < r < 2:425 symmetric wave propagation will be stable. Since, r ¼ 0, in Example
3 both anti-symmetric and symmetric waves will be stable. In the imperfectly bonded and fully slipping

interface cases when r > 0 and when kh increases, it is seen that region (II) decreases rapidly.

Example 4. Both inner and outer layers are Varga materials, the outer layers are pre-stressed by uniaxial

tension in x1-direction i.e., k1 ¼ k and k2 ¼ k3 ¼ k�1=2 while the inner layer is in a state of plane strain in

(x1x2)-plane i.e., k


3 ¼ 1 and k


1 ¼ k
�1
2 ¼ k
 which yield �a ¼ k3, �b ¼ k3=2, �a
 ¼ k
4 and �b
 ¼ k
2. Here k and k


are prescribed as k ¼
ffiffiffiffiffiffiffiffiffi
4:413

p
and k
 ¼ 1:5 which results in �a ¼ 4:41, �b ¼ 2:1, �a
 ¼ 5:063 and �b
 ¼ 2:25 and

the other prescribed parameters are r ¼ 1, a ¼ 1, r ¼ �0:75 and D ¼ 1. This example corresponds to Case 2
in Section 4.2.2 with a limiting squared phase speed of the composite nCL ¼ nS2 ¼ 4:4.

From Fig. 8(a)–(c) it can be seen that when kh ! 0, the behavior is similar to Examples 2 and 3.

Since there is no real value for nIP and nR < nIS < nCL, when kh ! 1, for the perfectly bonded case

nð1Þ
A ! nR and nðnÞ

A ! nCL ðn ¼ 2; 3; . . .Þ, while for the imperfectly bonded and the fully slipping interface

cases nð1Þ
A ! nR, nð2Þ

A ! nIS and nðnÞ
A ! nCL ðn ¼ 3; 4; . . .Þ. The frequency plots in Fig. 8(d)–(f) show that

when kh ! 0 the frequencies of all anti-symmetric modes tend to the cut-off frequencies calculated from Eq.

(33), except the modes which correspond to the finite limiting phase speeds as kh ! 0. In addition, since in

this example
ffiffiffi
a

p
D ¼ 1, the cut-off frequencies for kx ¼ 0 are for anti-symmetric waves np=2 (n ¼ 1; 2; . . .)

and for symmetric waves np (n ¼ 1; 2; . . .) where pairs of symmetric modes will have the same cut-off

frequency.



Fig. 8. Dispersion curves of the fundamental mode and next fifteen modes of Example 4. (a)–(c) Non-dimensional squared phase speed

n, (d)–(f) non-dimensional frequency X; solid lines for anti-symmetric waves and dashed lines for symmetric waves.

Fig. 9. Neutral curves corresponding to Example 4. (a)–(c) Anti-symmetric waves, (d)–(f) symmetric waves; shaded area is the region

where all modes are stable.
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The neutral curves and the stable regions are shown in Fig. 9. In the case of anti-symmetric waves, the
stable range when kh ! 0 for perfect and imperfect interface is r�ðAÞ

0 < r < rþðAÞ
0 and for fully slipping
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interface is r�ðAÞ
02 ð¼ r�ðAÞ

0 Þ < r < rðAÞ
01 ; while for symmetric waves, the stable range for perfect and imperfect

interface conditions is r < rðSÞ
0 and for fully slipping interface is r < rðSÞ

01 . When kh ! 1, both kind of

waves have the same stable range r�
R < r < rþ

R for all values of kx. In addition, for kx ¼ 0, 1 and 1 the

numerical results indicate that if �1:176 < r < 3:1 anti-symmetric wave propagation is stable, while
symmetric wave propagation will be stable if �3:414 < r < 3:1. In this example since r ¼ �0:75 both types

of waves are stable. For the imperfectly bonded and the fully slipping interface cases for both tensile and

compressive Cauchy stress r, when kh increases region (II) decreases rapidly.
7. Summary and conclusions

In the present analysis, the dispersive behavior of in-plane time harmonic anti-symmetric waves in a pre-

stressed incompressible symmetric layered composite with imperfectly bonded interfaces is studied. The

dispersion relation obtained for anti-symmetric waves differs from the corresponding case for symmetric

waves, through the elements of the propagator matrix associated with the inner layer. The limiting squared

phase speeds at both low and high wavenumber limits, the cut-off frequencies and stability considerations
are discussed in detail.

The behavior of the dispersion curves for anti-symmetric waves is for the most part similar to that of

symmetric waves at the low and high wavenumber limits. At low wavenumber limit, depending on the pre-

stress for perfectly bonded and imperfectly bonded interfaces at most only one finite limiting squared phase

speed may exist, while for the fully slipping interface case at most two finite limiting squared phase speeds

may exist. For higher modes which have infinite squared phase speeds when kh ! 0, the equation to obtain

the cut-off frequencies is derived. At high wavenumber limit as kh ! 1, both anti-symmetric and sym-

metric waves tend to the same limiting squared phase speeds.
For both anti-symmetric and symmetric waves, the bifurcation equations obtained for imperfect

interface and fully slipping interface cases are in the form of quartic equations of r, while for the perfectly
bonded case quadratic equations are obtained. Hence, in general for layered composites with imperfect or

fully slipping interfaces there are four branches of neutral curves, while for the perfectly bonded case there

are only two branches. The stable region is the area between the inner branches, because if r is outside this

region the fundamental mode will have a negative squared phase speed, while when r is beyond the outer

branches two negative squared phase speeds will be obtained for the fundamental and the next lowest

modes. The stable ranges of r at the low wavenumber limit for the imperfect interface case are the same as
for the perfectly bonded case, while at the high wavenumber limit the stable ranges of imperfect bonded

case are the same as for the fully slipping interface case. For all kx, symmetric wave propagation is stable in

the low wavenumber region even if the composite is pre-stressed by large compression, while anti-sym-

metric waves will not be stable in the low wavenumber region if the composite is pre-stressed beyond the

finite stable range.
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Appendix A. The elements of propagator matrix

The elements of propagator matrix PðhÞ are given by
Table

Roots

q1
q2

q
1
q
2

R––rea
a Th

when �a
P11 ¼ cq1q2½f ðq2ÞC2 � f ðq1ÞC1	j�1; P12 ¼ cq1q2½q1f ðq2ÞS1 � q2f ðq1ÞS2	j�1;

P13 ¼ q1q2½q2S2 � q1S1	j�1; P14 ¼ q1q2½C1 � C2	j�1;

P21 ¼ c½q1f ðq2ÞS2 � q2f ðq1ÞS1	j�1; P22 ¼ cq1q2½f ðq2ÞC1 � f ðq1ÞC2	j�1;

P23 ¼ �P14; P24 ¼ ðq2S1 � q1S2Þj�1;

P31 ¼ c2½q1f ðq2Þ2S2 � q2f ðq1Þ2S1	j�1; P32 ¼ c2q1q2f ðq1Þf ðq2Þ½C1 � C2	j�1;

P33 ¼ P11; P34 ¼ �P21;

P41 ¼ �P32; P42 ¼ c2q1q2½q1f ðq2Þ2S1 � q2f ðq1Þ2S2	j�1;

P43 ¼ cq1q2½q2f ðq1ÞS2 � q1f ðq2ÞS1	j�1; P44 ¼ P22;

ðA:1Þ
where
f ðqmÞ ¼ 1þ q2m � r; Cm ¼ coshðqmkhÞ; Sm ¼ sinhðqmkhÞ; ðm ¼ 1; 2Þ;
r ¼ r2=c; j ¼ q1q2cðq21 � q22Þ:

ðA:2Þ
The elements of propagator matrix P
ðdÞ are obtained from Eq. (A.1) by interchanging Pij $ P 

ij,

qm $ q
m, f ðqmÞ $ f 
ðq
mÞ, Cm $ C

m, Sm $ S


m, c $ c
 and j $ j
 where
f 
ðq
mÞ ¼ 1þ q
2m � rr; C

m ¼ coshðq
mDkhÞ; Sm ¼ sinhðq
mDkhÞ; ðm ¼ 1; 2Þ;

r ¼ c=c
; D ¼ d=h:
ðA:3Þ
Appendix B. Roots q1, q2, q


1 and q
2

The roots q1, q2, q
1 and q
2 calculated from Eqs. (27) and (28) may be either real, complex or pure

imaginary (Table 3).
3

q1, q2, q
1 and q
2
�a6 2�b �a > 2�b

0 < n < nS1
a n ¼ nS1 nS1 < n 0 < n < nS2

a n ¼ nS2 nS2 < n6 nS1 nS1 < n

R or C I I R or C I I I

R or C R or C R or C R or C I I R or C

�a

6 2�b
 �a
 > 2�b


0 < n
 < n

S1

a n
 ¼ n

S1 n


S1 < n
 0 < n
 < n

S2

a n
 ¼ n

S2 n


S2 < n

6 n


S1 n

S1 < n


R or C I I R or C I I I

R or C R or C R or C R or C I I R or C

l, C––complex and I––pure imaginary.

e strong ellipticity conditions Eq. (43) ensure that nS1 > 0 when �a6 �b; nS2 > 0 when �a > �b; n

S1 > 0 when �a


6 �b
; and n

S2 > 0


 > �b
.
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